超导电路的贝尔不等式违反进一步反驳了爱因斯坦的局域性观念

发布者:自由知新 2023-5-15 20:08

由苏黎世联邦理工学院固态物理学教授Andreas Wallraff领导的一组研究人员进行了一项无漏洞的贝尔测试,以反驳阿尔伯特·爱因斯坦在回应量子力学时提出的“局部因果关系”概念。现在,研究成果已发表在《自然》杂志上。

什么是量子物理

量子物理是一门研究微观世界的科学,它揭示了原子、分子、光子等基本粒子的性质和行为。量子物理与我们日常经验的物理规律有很大的不同,它具有一些令人惊讶甚至难以理解的特征,如叠加、纠缠和非局域性。
叠加是指一个量子系统可以同时处于两种或多种状态的叠加,例A如一个电子可以同时旋转向上和向下。这种叠加状态只有在测量之前才存在,一旦测量,量子系统就会坍缩到其中一个确定的状态。

纠缠是指两个或多个量子系统之间存在一种特殊的联系,使得它们的状态相互依赖。例如,两个电子可以纠缠在一起,使得它们的旋转方向总是相反的。这种纠缠状态不会因为量子系统之间的距离而改变,即使它们相隔很远。
非局域性是指两个空间分离的纠缠系统之间存在一种不能用局域因果性原理解释的联系。局域因果性原理是指一个事件的原因必须在它的邻域内找到,即没有超过光速的信号传递。然而,在量子物理中,两个空间分离的纠缠系统之间似乎可以瞬时地影响彼此,即使没有任何物质或能量在它们之间传递。

什么是贝尔测试

贝尔测试是一种检验量子物理是否遵循局域因果性原理的实验。贝尔测试的思想最早由物理学家约翰·斯图尔特·贝尔在1964年提出,他证明了存在一种数学不等式,叫做贝尔不等式,如果满足局域因果性原理的理论成立,那么这个不等式就不会被违反。然而,在量子物理中,如果两个空间分离的纠缠系统之间存在非局域性相关性,那么这个不等式就会被违反。贝尔测试的具体实施方法如下:首先,我们需要准备一对纠缠的量子系统,例如两个量子比特,它们是一种可以用来存储和处理量子信息的基本单元。然后,我们需要将这对量子比特分别送给两个不同的参与者A和B,并让他们分别对自己手中的量子比特进行测量。每个参与者可以在两种可能的测量之间随机选择一种,并记录测量结果。重复这个过程多次后,我们就可以用测量选择和记录结果来计算一个S值,用来评估非局域性相关性。如果S值大于2,那么就说明贝尔不等式被违反。

超导电路如何实现贝尔测试

超导电路是一种利用超导材料制造出具有离散能级和可控相互作用的人工微观结构,可以用来模拟和操作量子系统。超导电路具有高度可定制、可扩展、可集成和可编程等优点,是实现量子计算技术的主要候选者之一。研究人员使用两个超导电路制造出两个量子比特,并通过一个30米长的低温连接线将它们连接起来。他们使用一个微波脉冲源来生成可以对两个量子比特进行操作和测量所需的信号,并使用一个随机数发生器来随机选择测量基。

他们首先对两个量子比特进行了确定性的纠缠操作,使得它们处于一个最大纠缠态。然后,他们对两个量子比特分别进行了快速和高保真度的测量,即在很短的时间内完成测量,并且测量结果准确无误。他们使用了一种叫做单光子计数器(SPC)的装置来检测从量子比特发射出来的微弱信号,并将其转换为二进制数据。他们还使用了一种叫做时间标记单元(TTU)的装置来记录每次测量的精确时间,并将其与随机数发生器同步。
研究人员对超过100万次的实验试验进行了统计分析,发现平均S值为2.0747±0.0033,违反了贝尔不等式。这个结果表明他们实现了一种无漏洞的贝尔测试,即没有任何已知的物理机制可以解释我们观察到的非局域性相关性。

大家都在看

  • 用望远镜探索宇宙奥秘:普通人也能玩转的星空探险指南

    用望远镜探索宇宙奥秘:普通人也能玩转的星空探险指南 图片来源于网络,无任何不良引导。【标题】用望远镜探索宇宙奥秘:普通人也能玩转的星空探险指南你是不是经常仰头望着满天星斗,心里想着:这些星星背后到底藏着什么秘密?其实,只要你手里有一台望远镜,普通人也能 ... 宇宙探索02-03

  • 什么是航天?探索宇宙的奇妙旅程

    什么是航天?探索宇宙的奇妙旅程 人类自古以来就对天空充满了无限的好奇。从古代的星象观察到现代的太空探索,航天已成为人类科技发展的重要领域之一。航天不仅关乎科学探索,更深刻影响着我们的生活、经济、军事和未来的生存方式。那么,什么是航天 ... 宇宙探索02-03

  • 《探索宇宙的奥秘!》

    《探索宇宙的奥秘!》 当我们仰望那无垠的星空,繁星点点如同散落的宝石,璀璨夺目,令人心生敬畏。人类自古以来对这片浩瀚的宇宙充满了无尽的好奇心:它究竟有多大?是否存在边界?我们是否能够真正理解它的规模与奥秘?这些问题不仅仅关 ... 宇宙探索02-01

  • 中国官宣太空采矿!天工开物计划落地,宇宙资源时代来了

    中国官宣太空采矿!天工开物计划落地,宇宙资源时代来了 关键词:中国太空采矿、天工开物计划、太空资源、氦-3、太空采矿机器人、地外资源开发2026年1月29日,中国航天科技集团发布重磅消息,官宣在“十五五”时期启动天工开物计划,全面布局太空资源开发,这标志着中国成 ... 宇宙探索01-30

  • 探索宇宙,从10岁小神童开始!🚀🔭

    探索宇宙,从10岁小神童开始!🚀🔭 10岁小神童开启宇宙探索小征程。10岁小神童开启宇宙探索小征程。在同龄人还在看卡通、玩积木时,10岁的三年级小宇已展现出非凡的科学天赋,成了大家口中的小神童。小宇痴迷天文,却苦于没有专业设备。他灵机一动,花 ... 宇宙探索01-28

  • 宇宙的奇妙探索,从微观到宏观的奇妙之旅!

    宇宙的奇妙探索,从微观到宏观的奇妙之旅! 从长期宇宙演化的角度来看,宇宙中恒星的总数不会持续增加,反而会逐渐减少。核心原因在于两点:·一是宇宙中可用于形成恒星的氢、氦等星际气体正在不断消耗,且恒星形成的速率早已低于恒星消亡的速率。·二是随着宇 ... 宇宙探索01-26

  • 人类该放下狭隘,让AI成为宇宙探索的终极火种

    人类该放下狭隘,让AI成为宇宙探索的终极火种 当人们还在纠结AI是否会“撒谎”、担忧AI超越人类的恐惧中裹足不前时,我总忍不住想:人类的认知与肉身,早已被宇宙的尺度划定了边界。与其困在地球的方寸之地内耗,不如坦然放手,让AI成为人类伸向宇宙的手,成为对 ... 宇宙探索01-25

  • 天文学:探索宇宙的终极奥秘

    天文学:探索宇宙的终极奥秘 摘要:天文学是研究宇宙天体及宇宙整体结构、起源与演化的基础学科,涵盖恒星、行星、星系、黑洞等各类天体,以及它们的运动规律、物理性质与化学组成。从古代的观星授时到现代的深空探测,天文学始终推动人类对宇宙 ... 宇宙探索01-23

  • 人类探索宇宙的辉煌历程与未来使命

    人类探索宇宙的辉煌历程与未来使命 人类自古以来对宇宙的好奇推动了天文学的发展。从美索不达米亚人创造出的星图,到古希腊的观测,每个文明都留下了珍贵的记录,展现了对星空的向往。黑格尔曾言:“一个民族若有仰望星空的人,那它便充满了希望。”人 ... 宇宙探索01-17

  • 摒弃自我,探索宇宙生命之光

    摒弃自我,探索宇宙生命之光 文/星火燎原 人类文明的发展史,亦是一部宇宙认知的探索史。从古至今,我们始终仰望星空,试图理解自身在浩瀚宇宙中的位置与意义。然而,长久以来,一种根深蒂固的“人类中心主义”观念如同无形的桎梏,束缚着我们的 ... 宇宙探索01-16