我们该如何教机器学习?
2013年夏天,一篇平平常常的帖子出现在谷歌的开源博客上,标题是《学习词汇背后的含义》。
帖子中说:“目前计算机还不太擅长理解人类语言,虽然离这个目标还有一段距离,但我们正在利用最新的机器学习和自然语言处理技术取得重大进展。”
谷歌从纸媒和互联网获取了大量人类语言数据,比以前最大的数据集还大几千倍,将数据集输入一个受生物学启发的“神经网络”,并让系统寻找词语的相关性和联系。
借助所谓的“无监督学习”,这个系统开始发现模式。例如,它注意到词语“北京”与“中国”的关系,同“莫斯科”与“俄罗斯”的关系一样,不管词语的意思是什么。能否说计算机“理解”了?这个问题只能让哲学家来回答,但是很显然系统已经抓住了它“阅读”的内容的某种本质。
谷歌将这个系统命名为“word2vec”――意思是将词汇转换成数字向量――并将其开源。对数学家来说,向量有各种奇妙的性质,你可以像处理简单的数一样处理它们,进行加、减、乘运算。通过这种方式,研究人员很快发现了一些惊人的意想不到的东西。他们称之为“连续空间词汇表示中的语言规律”,对它的解释没有听起来那么难。word2vec把词汇变成了向量,这样你就能对词汇做数学运算。
例如,如果输入中国+河流,就会得到长江。输入巴黎-法国+意大利,就会得到罗马。
输入国王-男人+女人,就会得到女王。
结果很惊人。word2vec系统开始应用于谷歌的机器翻译和搜索引擎,业界也将其广泛应用于其他领域,例如招聘,它成了科学和工程界新一代数据驱动的语言学家的必备工具。
两年过去了,没有人意识到存在问题。
这是一本关于机器学习与人类价值观的书:关于不通过手工编程而是从数据中学习的系统,关于我们如何教它们,以及教什么。
机器学习主要包括3个领域:无监督学习,机器被直接给予一堆数据,就像word2vec系统一样,目的是理解数据,找到模式、规律、有用的方式来提炼、表示或可视化数据;监督学习,系统被给予一堆已分类或标记好的例子进行学习,比如假释犯是否再犯,然后用习得的模型对从未见过或尚不清楚基本事实的新例子进行预测;强化学习,系统被置于一个有奖惩的环境中,就像补能和危险并存的赛艇赛道,目的是找出最小化惩罚和最大化奖励的最优方法。
越来越多的人意识到,世界正逐渐以各种方式依赖于机器学习领域给出的数学和计算模型。这些或简单或复杂的模型――一些只能算是电子表格,另一些则可被称为AI――正逐步取代人类判断和更传统的显式编程的程序。
这不仅发生在科技和商业领域,也发生在具有伦理和道德影响的领域。司法体系越来越广泛地使用“风险评估”软件来决定保释和假释。道路上的车辆越来越多地自动驾驶。我们的贷款申请、简历和体检结果逐渐不再由人类负责评估。进入21世纪,越来越多的人都在致力于让世界――在象征意义上和字面意义上――自动驾驶。
近年来,两个不同的群体敲响了警钟。第一个群体关注当前的技术伦理风险。如果面部识别系统对某个族群或性别特别不准确,或者如果有人被未经审核的统计模型判定不得保释,而法庭上的所有人――包括法官、律师和被告――都不理解,这就存在问题。这样的问题无法在传统的学科领域内解决,只能通过计算机科学家、社会学家、律师、政策专家和伦理学家的对话来解决。对话已经开始。
还有一个群体担忧的则是未来的危险。随着我们的系统越来越能灵活、实时地做决策,无论是在虚拟还是现实世界都面临这种危险。毫无疑问,过去10年见证了AI和机器学习发展史上最令人振奋但也最突然最令人担忧的进展。与此同时,一种无形的禁忌逐渐被打破,AI研究人员不再避讳讨论安全问题。事实上,过去5年,在这个领域,这种担忧已经从边缘变成了主流。
虽然对于应优先考虑眼前的问题还是长远问题,目前还存在争议,但这两个群体在大目标上是一致的。随着机器学习系统越来越普遍和强大,我们会发现自己越来越经常地处于“魔法师学徒”的境地:我们召唤出一种力量,给它一组指令,希望它自主但又完全顺从,然后一旦我们意识到指令不准确或不完整,又手忙脚乱地阻止,以免用我们的智慧召唤出某种可怕的东西。
如何防止这种灾难性的背离――如何确保这些模型捕捉到我们的规范和价值观,理解我们的意思或意图,最重要的是,以我们想要的方式行事――已成为计算机科学领域最核心、最紧迫的问题之一。这个问题被称为对齐问题(thealignmentproblem)。
随着研究前沿越来越接近开发出所谓的“通用”智能,现实世界的机器学习系统越来越多地介入个人和大众生活的道德伦理领域,对这一警告产生了一种突然的、充满活力的反应。一个多元化团体正在跨越传统的学科界限。非营利组织、智库和研究所纷纷积极参与。越来越多的工业界和学术界领袖开始大声疾呼,并相应地增加研究经费。第一代专攻机器学习伦理和安全领域的研究生已经入学。对齐问题的第一批应对者已到达现场。

书名:人机对齐
原版书书名:TheAlignmentProblem
出版时间:2023年6月
作者:【美】布莱恩·克里斯汀著;唐璐译
这本书是近100次正式采访和数百次非正式谈话的产物,历时4年,行程数万公里,来自这一年轻领域广阔前沿的研究者和思想家。我发现的是正在一片荒原上开拓的进程,既令人振奋,有时也令人恐惧。我原以为自己对这个故事很熟悉,结果却发现这个故事比我曾认为的更吸引人,更令人担心,也更充满希望。
机器学习表面上是技术问题,但越来越多地涉及人类问题。人类、社会和公众难题正在变得技术化。技术难题正在变得人性化、社会化和公众化。事实证明,我们在让这些系统“以我们想要的方式行事”方面的成功和失败,为我们审视自我提供了一面真实的、启示性的镜子。
这个故事由3个不同部分组成。
第一部分探讨对齐问题的前沿:现有的系统已经与我们的根本意图不一致之处,以及在我们觉得有能力监督的系统中尝试掌控这些意图的复杂性。
第二部分将重点转向强化学习,我们逐渐开始理解不仅能预测,而且能行动的系统;其中有一些经验可以帮助我们理解进化、人类动机和激励的微妙之处,对商业和育儿都有启发。
第三部分将我们带到AI安全研究的前沿,我们将了解目前最好的一些想法,如何将复杂的自动系统与过于微妙或复杂、无法明确的规范和价值观相结合。
不管是好是坏,未来一个世纪的人类故事都很可能是建立并启动各种各样的智能系统。就像魔法师的学徒一样,我们会发现自己也只是在一个充斥着扫帚的世界里的众多自主体之一。
我们到底该怎么教它们?教什么?
——互动问题——
你认为机器学习会有什么风险?
欢迎在文末留言,将随机抽选三位用户送出《人机对齐》一本。
获奖名单将在下期“蝌学荐书”中公布,欢迎留言~
恭喜上期获奖者@小燕子、@宋婷、@小沈 获得《读虫记》一本,请与蝌蚪君联系获取赠书。
责编:咕噜

大家都在看
-
中外交流丨镜头下的沙海新绿——从图片展上的照片看新疆带给世界的治沙灵感 “大美新疆铸辉煌——纪念新疆维吾尔自治区成立70周年”主题图片展12月10日在哈萨克斯坦国家博物馆拉开帷幕。哈国家博物馆馆长阿布德哈利乌勒致辞说,本次图片展在哈萨克斯坦成功开幕,是两国人民民心相亲、精神与智 ... 机械之最12-17
-
中国玩具如何“玩转”全球大市场? 原标题:科技范儿、文化范儿、绿色范儿——中国玩具“玩转”全球大市场在义乌全球数贸中心,外国客商与经营户洽谈采购事宜。王怿杰摄在义乌全球数贸中心,商家展示可变形智能玩具。王怿杰摄广东新佳奇科技有限公司工 ... 机械之最12-17
-
专科生逆袭!2026机械专业必考8大黄金证书,好就业薪资高! 各位机械专业的大专同学们,是否在思考如何提升竞争力,获得高薪工作?答案就在考取高含金量证书。在智能制造时代,“技能+证书”是你最硬的敲门砖。2026年大专机械设计与制造专业最值得投资的8大证书,能直接助力你 ... 机械之最12-17
-
在寒风中飘落的树叶是麻烦还是资源?每年520万吨枯枝落叶去哪了 深秋初冬,落叶玩家“卷”了起来:他们收集好看的叶子,亲手做成一顶魔法帽、一件披风或是扎成一把花束,用自己的巧思延长落叶的生命。京城的树郁郁葱葱。统计显示,每年的枯枝和落叶达到了惊人的520万吨,而且仍在 ... 机械之最12-17
-
跃升48位!太重再次荣登“中国机械500强”榜单 近日,2025年中国机械500强研究报告发布会暨中机企协业务总部启用仪式圆满落幕。太重凭借优异表现和雄厚实力,再次荣登“2025中国机械500强”与“2025中国机械500大”双榜单,其中“2025中国机械500强”较去年跃升48 ... 机械之最12-17
-
Anthropic重磅新研究:当AI采访了1250人,它看见了人类的“职业软肋” AI不仅能回答问题,还能采访人类了。Anthropic让模型与1250名真实用户深度对话,自动写提纲、追问、做聚类分析,最后画出一张「人类情绪雷达图」。这一次,人类成了AI的研究对象。很难想象,有一天AI真的开始采访人 ... 机械之最12-16
-
世界五大军事家第5名:成吉思汗 —— 冷兵器时代最恐怖的战争机器 图片来源于网络如果战争是一门关于破坏与征服的极端艺术,那么成吉思汗无疑是这门艺术史上最伟大的工程师。他并非仅仅是一位骑兵统帅,而是一位颠覆了草原规则、重塑了战争逻辑的帝国缔造者。他的蒙古军团,是中世纪 ... 机械之最12-16
-
“十四五”期间 太原市强化企业创新主体地位 激发创新活力 创新驱动发展,技术引领未来。在科技竞争日益激烈的背景下,作为市场主体的企业,创新能力已成为衡量企业乃至城市核心竞争力的关键指标。 “十四五”期间,我市强化企业创新主体地位,推进企业与国内大院大所 ... 机械之最12-16
-
理科专业解读一:从学业到就业,一文搞懂机械类专业! 机械类专业,由于其布点院校多、招生规模大、社会应用性强、就业前景广阔,成为无数考生与家庭青睐的务实选择。因此几乎每年都是高考志愿填报的“重头戏”。本期飞翔老师将带大家详细盘点和梳理机械大类下各专业的培 ... 机械之最12-15
-
大专生逆袭!2026机械设计与制造专业必考8大证书 各位机械专业的同学,你是否担心专科学历在求职时缺乏竞争力?是否觉得传统机械行业薪资天花板触手可及?在智能制造与工业4.0席卷全球的今天,仅凭一张毕业证早已不够。精准考取高含金量证书,是你打破学历局限、实 ... 机械之最12-15
相关文章
- 外骨骼机器人“出圈” 行业痛点待解
- 理科专业解读一:从学业到就业,一文搞懂机械类专业!
- 大专生逆袭!2026机械设计与制造专业必考8大证书
- 一级军士长的带兵“三字诀”
- 卖“陪伴”成了生意经?为什么大家都不想独处了
- 四大维度,深度解析2025年中国机械工业500强
- 不要温和地走入AI时代:一封写给青少年的书信
- 太重再次荣登“中国机械500强”榜单
- 马钧:被正史忽略的三国机械之神一具水车救活万民,诸葛亮都叹服
- 《时代》周刊2025年度人物:AI缔造者
- 湖北十堰调查组通报“最忙五人组”事件
- 是必需品还是智商税?空气净化器,有些是不是“吹”过头了?
- AI与人文的“危”与“机”——读《AI时代的文学教育》
- 曾是机械键盘神!2025国产轴崛起,Cherry如今快混不下去
- 网文创作:别被套路给套路了
- 科学需要讲故事——从神经机制到社会信任的深层逻辑
- 玄武岩纤维为何能身价倍增?刘嘉麒院士科普解读
- 地球上千公里深处可能存在重要原始水储库
- 大载重全地形机器人「觉物科技」完成超亿元融资,扎根新疆五年打磨出 “变形金刚”
- 我们需要对AI“好好说话”吗
热门阅读
-
天下第一暗器暴雨梨花针,传说中的唐门暗器做出来了 07-13
-
世界十大大型船舶排名,第一能承重六十万吨! 07-13
