简约的哈勃常数,偏差甚小,为何能引发宇宙学危机?

发布者:金华大帅 2023-2-28 08:18

哈勃常数,看似平常,实则危机四伏

自2014年起,哈勃常数的测量值——现在宇宙膨胀的速率,出现了争议。远处星体所得的测量数据比近处星体测量数据小约10%。虽然它们听起来相差不大(事实上并不是这样,巨大的科学成就总是需要最精准的测量值),但它们的不确定性应该只有2%。 从统计学上讲,在2%的不确定性中,10%的误差需要引起重视,并进行调查。从2014年起,人们提出了300多种解决这个“宇宙学危机”的方案。但没有一种方案得到了宇宙学家的普遍赞同,而且随着科学家们继续进行着测量,危机还在加大。

LCDM模型

我们对宇宙学的现代理解正在濒临险境。我们把它概括为 λ-CDM模型,缩写为LCDM模型。像其他科学模型一样,这个模型做了几个基本假设。它假设了广义相对论在宇宙学尺寸下适用,且宇宙具有各向同性,宇宙是平坦的,其中有一些地方是空的,被称作暗物质,不对普通物质有任何反应(CDM就是指冰冷的暗物质)。还有一些其他物质称作暗能量(即λ),在宇宙膨胀中维持着宇宙密度。

一旦这些假设被确立了(在大量观测事实上,它们的确被确立了), LCDM就只有六个自由参数。你需要做各种宇宙测量,去得到这些数据。而你一旦得到了这些参数,就可以预测所有关于宇宙的事,包括且不仅限于现在的宇宙膨胀速率。

固定这些参数的最好方法是宇宙微波背景辐射(CMB),它是宇宙诞生38万年时留下来的光。CMB用处很多,它很宏大,容易测量,容易理解。

当你拥有了CMB测量值之后,就可以像欧洲航天局的普朗克卫星任务一样,填补LCDM的未知部分,掌握住宇宙的整个历史。

通往星星的天梯

这就带来了紧张气氛。早期宇宙测量带给我们大量LCDM参数的信息,这些信息不仅来自CMB,还来自重子声学振荡——早期宇宙中的巨大声波在宇宙中游荡留下的星系的微小位移,以及大量光的元素。

不管你怎样结合早期宇宙测量数据去完成LCDM模型,你最终都会得到哈勃常数大约为68km/s/Mpc。

那么,问题解决了。是吗?不,没有那么快。

你还可以直接测量哈勃常数。你需要测量大量物体的距离和速度,可以选择Ia型超新星,星系性质,米拉变星和一些类型的红巨星。

除了红巨星,其他方法测得的哈勃常数为一个较高的数字——超过74km/s/Mpc。

有趣却有些沮丧的是,红巨星测得的结果恰在这两个极端数字之间——因此,我们迎来了危机。

无解决之路

我们已经有两种截然不同的方法来测量哈勃常数,每一种都经过了实验检验,研究理解。LCDM模型在预测很多宇宙观测上取得了巨大成功,没有人愿意抛弃这个模型。CMB的测量值是精确的——几乎是目前天文学历史上最精准的测量。

从另一方面来说,超新星的测量也是合理的。一些其他的探测器给出了类似的哈勃常数值。早期宇宙与后期宇宙,整体测量与当地测量,大尺度与小尺度,都形成了对比——不管你怎样区分它们,我们始终有两种应当吻合的看法出现了分歧。我们本该有一个普遍的,一致的测量结果,但我们没有。

宇宙学家对这个“危机”很感兴趣,因为自20多年前,我们发现暗能量之后,再没有出现如此有趣之事。当测量结果发生分歧,这是自然界在悄悄告诉我们,这里有一个新的空间,一个新的机会让我们揭开宇宙更多的真相。

迄今为止,已有300多种宇宙危机的解决方案。有人呼吁在CMB上进行更多的物理研究,有人认为暗能量近年研究中在作怪,有人从更基础的方面改变了物理理论,使观测结果变得更复杂。

但是,没有一个方案能解释大量宇宙学事实,我们距达成一致还有很长的路。

我个人相信“一件趣事,很可能是一件错事。”这次危机最无聊的解释是:在我们局部尺度测量哈勃常数的过程中,出现了差错。

但只有时间会告诉我们真相。

BY: Paul M. Sutter

FY: 静狸

如有相关内容侵权,请在作品发布后联系作者删除

转载还请取得授权,并注意保持完整性和注明出处

展开全文

大家都在看

  • 古希腊“天文学”:为何能够领先中国,背后原因引人思考

    古希腊“天文学”:为何能够领先中国,背后原因引人思考 新中国之后,在天文学领域,中国考古取得了很多重大发现,其中两个尤其特别:其一,先秦史书上说“北斗九星,七见二隐”,而考古发现的距今5300年前的河南巩义双槐树遗址中,就发现了北斗九星的布置,因此北斗原本九 ... 天文之最05-20

  • 第谷.布拉赫,丹麦天文学界的奇才

    第谷.布拉赫,丹麦天文学界的奇才 第谷·布拉赫(Tycho Brahe,1546—1601)是丹麦历史上最杰出的天文学家之一,他的贡献不仅在于开创了现代天文学的基础,更在于他以独特的视角和方法推动了科学革命的进程。布拉赫的研究和观测成果,为后来的天文学 ... 天文之最05-19

  • 宇宙也自转?

    宇宙也自转? / 宇宙也自转?最近,发表在Monthly Notices of the Royal Astronomical Society上的一项新研究表明,宇宙可能会自转——只是非常缓慢。这一发现可能有助于解决天文学最大的难题之一。目前的模型认为,宇宙向各个方 ... 天文之最05-18

  • 万年前最硬核"天文密码"!揭秘燧人氏如何用北极星终结"看天吃饭"

    万年前最硬核"天文密码"!揭秘燧人氏如何用北极星终结"看天吃饭" 在距今约1.2万年前的末次冰期结束后,中原大地逐渐温暖湿润,黄河流域的先民们开始尝试定居生活。此后,一位被后世尊称为"燧人氏"的智者,通过对北极星与北斗七星的持续观测,开创性地构建起华夏民族最早的 ... 天文之最05-18

  • 天文学界的“奇才与怪咖”

    天文学界的“奇才与怪咖” 第谷·布拉赫:天文学界的“奇才与怪在历史的星空中,有些人就像璀璨的星星,照亮了人类探索宇宙的道路。而今天我们要聊的这位丹麦天文学家,第谷·布拉赫(Tycho Brahe),不仅是一位天文学的奇才,还是个不折不扣 ... 天文之最05-18

  • 世界时钟之祖,最古老的天文钟——宋朝的科技巅峰“水运仪象台”

    世界时钟之祖,最古老的天文钟——宋朝的科技巅峰“水运仪象台” 公元 1085 年,一场关乎宋朝颜面的外交危机正在发酵。北宋使臣苏颂出使辽国时,因两国历法差异引发争执 —— 辽国冬至日比北宋晚一天,辽官当场质问:"哪国历法更准?" 苏颂的回答堪称教科书级外交智慧:&#3 ... 天文之最05-18

  • 第谷•布拉赫:丹麦天文学界的奇才

    第谷•布拉赫:丹麦天文学界的奇才 在天文学的浩瀚星空中,有一个名字如同一颗璀璨的星星,闪耀着无与伦比的光芒——第谷·布拉赫(Tycho Brahe)。这位丹麦天文学家不仅以其精湛的观测技术和数据分析能力而闻名,更以其传奇的生活故事和个性魅力赢得 ... 天文之最05-18

  • 第谷•布拉赫:丹麦天文学的奇才与《鲁道夫天文表》的传奇

    第谷•布拉赫:丹麦天文学的奇才与《鲁道夫天文表》的传奇 在天文学的历史长河中,许多杰出的人物推动了科学的进步,其中第谷·布拉赫(Tycho Brahe,1546—1601)无疑是一个闪耀的名字。他不仅以精确的观测和创新的天文仪器而闻名,更因其与约翰内斯·开普勒的合作,留下了 ... 天文之最05-18

  • 地球之最天文篇:月球上最早的“软着陆”

    地球之最天文篇:月球上最早的“软着陆” 前苏联的“月球2号”是一头撞向月球的,这种毁灭性的着陆称为“硬着陆”。如果像飞机一样,能在月面上徐徐降落,到月面上后飞行器不受损坏,里面的仪器能照常工作,那种着陆方式称为“软着陆”。人类第一次在月面上 ... 天文之最05-13

  • 中国历史之“最”——震撼全球的璀璨明珠

    中国历史之“最”——震撼全球的璀璨明珠 在悠悠历史长河中,中国这片古老而神奇的土地孕育出了无数令人叹为观止的奇迹。今天,就让我们一同领略那些震撼世界、独一无二的中国历史之“最”。1. 最长的城墙——万里长城蜿蜒万里、气势磅礴的万里长城。横跨15 ... 天文之最05-04