核聚变如何让恒星发光?这是个问题,来看科学家回答

发布者:丹江水暖 2023-4-16 13:16

图:图片阐述了太阳及恒星通过核聚变获得能量的机制。图片中,蓝色球体代表中子,黄色球体代表质子。2个氢原子结合后形成了更重的氦原子,并释放出能量促使恒星发光。

今天,核能发电领域取得新的突破!AP称这一突破性成果是气候与清洁能源领域中的里程碑。来自美国能源部的发言人为我们揭示了促使恒星及太阳发光的核聚变机制。

核聚变如何形成?

核聚变反应能够为太阳以及其他恒星提供能量。在聚变反应中,两个较轻的核原子合并后便形成了更重的核原子,并释放出能量。

爱因斯坦等式(E=mc2)揭示了这一机制,即质量与能量能够相互转化。

如果科学家能够将这一核聚变能量用于我们的机器生产,那么,这将会是非常重要的能量生产渠道。

聚变过程涉及多种不同的已知元素。但是,关注聚变能量应用的研究人员尤其对氘氚聚变反应感兴趣。氘氚聚变能够产生一个中子、一个氦核,并且能够释放出远超其他聚变反应的能量。未来,聚变发电装置,例如托卡马克装置或者星型热核能反应器以及氘氚聚变反应中子或许能够生产出电能供我们使用。此外,研究人员关注氘氚聚变反应的另一个原因是,这一聚变反应能够在较低温度下产出大量能量,远低于其他元素所需的温度。

相关知识

恒星是由引力作用汇聚而成的球形发光等离子天体。距离地球最近的恒星是太阳。夜间,我们裸眼便能看到很多恒星,但是,由于距离遥远,这些恒星天体看上去就是一个光点。最显著的恒星已经根据星座及星群进行分类,并且为一些亮星赋予了名字。天文学家已经建立了一套组合星表来记录标准的恒星名称,从而方便辨认我们所熟知的恒星。当前,已经探测到10²² 到 10²⁴ 颗宇宙恒星,但是,仅有4000颗位于银河系中的恒星能够通过裸眼观测到。

核聚变,又称聚变反应,是指将两个较轻的核结合而形成一个较重的核和一个极轻的核的一种核反应形式。在此过程中,物质并没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子。核聚变是给活跃的或“主序的”恒星提供能量的过程。

E = mc²,即质能等价(mass-energy equivalence)、质能守恒、质能互换,亦称为质能转换公式、质能方程,是一种阐述能量(E)与质量(m)间相互关系的理论物理学公式,公式中的 c 是物理学中代表光速的常数。

阿尔伯特·爱因斯坦,是出生于德国、拥有瑞士和美国国籍的犹太裔理论物理学家,他创立了现代物理学的两大支柱的相对论及量子力学,也是质能等价公式的发现者。他在科学哲学领域颇具影响力。因为“对理论物理的贡献,特别是发现了光电效应的原理”,他荣获1921年度的诺贝尔物理学奖。这一发现为量子理论的建立踏出了关键性的一步。

该公式表明物体相对于一个参照系静止时仍然有能量,这是违反牛顿系统的,因为在牛顿系统中,静止物体是没有能量的。这就是为什么物体的质量被称为静止质量。公式中的E可以看成是物体总能量,它与物体总质量(该质量包括静止质量和运动所带来的质量)成正比,只有当物体静止时,它才与物体的(静止)质量(牛顿系统中的质量)成正比。这也表明物体的总质量和静止质量不同。

反过来讲,一束光子在真空中传播,其静止质量是0,但由于它们有运动能量,因此它们也有质量。

这个等式源于阿尔伯特·爱因斯坦对于物体惯性和它自身能量关系的研究。研究的著名结论就是物体质量实际上就是它自身能量的量度。为了便于理解此关系的重要性,可以比较一下电磁力和引力。电磁学理论认为,能量包含于与力相关而与电荷无关的场(电场和磁场)中。在万有引力理论中,能量包含于物质本身。因此物质质量能够使时空扭曲,但其它三种基本相互作用(电磁相互作用,强相互作用,弱相互作用)的粒子却不能,这并不是偶然的。

大家都在看

  • 用望远镜探索宇宙奥秘:普通人也能玩转的星空探险指南

    用望远镜探索宇宙奥秘:普通人也能玩转的星空探险指南 图片来源于网络,无任何不良引导。【标题】用望远镜探索宇宙奥秘:普通人也能玩转的星空探险指南你是不是经常仰头望着满天星斗,心里想着:这些星星背后到底藏着什么秘密?其实,只要你手里有一台望远镜,普通人也能 ... 宇宙探索02-03

  • 什么是航天?探索宇宙的奇妙旅程

    什么是航天?探索宇宙的奇妙旅程 人类自古以来就对天空充满了无限的好奇。从古代的星象观察到现代的太空探索,航天已成为人类科技发展的重要领域之一。航天不仅关乎科学探索,更深刻影响着我们的生活、经济、军事和未来的生存方式。那么,什么是航天 ... 宇宙探索02-03

  • 《探索宇宙的奥秘!》

    《探索宇宙的奥秘!》 当我们仰望那无垠的星空,繁星点点如同散落的宝石,璀璨夺目,令人心生敬畏。人类自古以来对这片浩瀚的宇宙充满了无尽的好奇心:它究竟有多大?是否存在边界?我们是否能够真正理解它的规模与奥秘?这些问题不仅仅关 ... 宇宙探索02-01

  • 中国官宣太空采矿!天工开物计划落地,宇宙资源时代来了

    中国官宣太空采矿!天工开物计划落地,宇宙资源时代来了 关键词:中国太空采矿、天工开物计划、太空资源、氦-3、太空采矿机器人、地外资源开发2026年1月29日,中国航天科技集团发布重磅消息,官宣在“十五五”时期启动天工开物计划,全面布局太空资源开发,这标志着中国成 ... 宇宙探索01-30

  • 探索宇宙,从10岁小神童开始!🚀🔭

    探索宇宙,从10岁小神童开始!🚀🔭 10岁小神童开启宇宙探索小征程。10岁小神童开启宇宙探索小征程。在同龄人还在看卡通、玩积木时,10岁的三年级小宇已展现出非凡的科学天赋,成了大家口中的小神童。小宇痴迷天文,却苦于没有专业设备。他灵机一动,花 ... 宇宙探索01-28

  • 宇宙的奇妙探索,从微观到宏观的奇妙之旅!

    宇宙的奇妙探索,从微观到宏观的奇妙之旅! 从长期宇宙演化的角度来看,宇宙中恒星的总数不会持续增加,反而会逐渐减少。核心原因在于两点:·一是宇宙中可用于形成恒星的氢、氦等星际气体正在不断消耗,且恒星形成的速率早已低于恒星消亡的速率。·二是随着宇 ... 宇宙探索01-26

  • 人类该放下狭隘,让AI成为宇宙探索的终极火种

    人类该放下狭隘,让AI成为宇宙探索的终极火种 当人们还在纠结AI是否会“撒谎”、担忧AI超越人类的恐惧中裹足不前时,我总忍不住想:人类的认知与肉身,早已被宇宙的尺度划定了边界。与其困在地球的方寸之地内耗,不如坦然放手,让AI成为人类伸向宇宙的手,成为对 ... 宇宙探索01-25

  • 天文学:探索宇宙的终极奥秘

    天文学:探索宇宙的终极奥秘 摘要:天文学是研究宇宙天体及宇宙整体结构、起源与演化的基础学科,涵盖恒星、行星、星系、黑洞等各类天体,以及它们的运动规律、物理性质与化学组成。从古代的观星授时到现代的深空探测,天文学始终推动人类对宇宙 ... 宇宙探索01-23

  • 人类探索宇宙的辉煌历程与未来使命

    人类探索宇宙的辉煌历程与未来使命 人类自古以来对宇宙的好奇推动了天文学的发展。从美索不达米亚人创造出的星图,到古希腊的观测,每个文明都留下了珍贵的记录,展现了对星空的向往。黑格尔曾言:“一个民族若有仰望星空的人,那它便充满了希望。”人 ... 宇宙探索01-17

  • 摒弃自我,探索宇宙生命之光

    摒弃自我,探索宇宙生命之光 文/星火燎原 人类文明的发展史,亦是一部宇宙认知的探索史。从古至今,我们始终仰望星空,试图理解自身在浩瀚宇宙中的位置与意义。然而,长久以来,一种根深蒂固的“人类中心主义”观念如同无形的桎梏,束缚着我们的 ... 宇宙探索01-16