对称性展现数学之美!杨振宁是如何为粒子物理奠基的?
贝尔原本是想通过自己的贝尔不等式,去推翻玻尔他们对EPR思想实验的量子解释。但谁曾料到,等实验真的做出来后,结果竟然啪啪打脸。原本还打算输出一波,结果却给对方送了人头。对此,泊松直呼内行。
有小伙伴还是不理解,贝尔不等式怎么就能检验隐变量是否存在了呢。其实如果仔细了解一下,这个不等式的推导过程。你就知道,因为它本质是从逻辑出发推导出来的。仅就核心本质来说,它和理论本身没有太大关系。
其实到这里,我们已经把量子力学早期的基础部分介绍的差不多了。之前介绍的差不多都是20世纪上半叶的事,接下来呢,我会再介绍一些距离我们不是那么远的,上世纪50年代后的进展。
量子理论到了下半场,“低垂的果实”已经越来越少了,颠覆性的突破不再那么容易出现。如果上半场是在拓荒,那么下半场,主要是在打地基和盖楼。下半场中出现的名词,也不再像量子纠缠,量子邃穿什么的那么直白和耳熟能详。
比如今天要说的这个杨-米尔斯理论。从牛顿的经典力学,到后来爱因斯坦的广义相对论,四大基本力中,引力是最先被我们所认识的。此后,第二个被理论成功描述的基本力就是电磁力。

早先,麦克斯韦通过一组简洁而优美的方程组,率先把电和磁完成了统一。这个著名的麦克斯韦方程组,体现了电磁学里的一个重要特点-电荷守恒。如果某处突然出现一个负电荷,那么在另一处一定会出现一个与之对应的正电荷。
早前的电磁学可以说是建立在自然现象基础上的,主要来源于物理中的实验。但是后来,德国数学家赫尔曼·外尔根据电荷守恒这种局域对称性,通过自创的规范场理论,直接从数学上推导出了等效于麦克斯韦方程组的电磁学方程。
在泡利的推动下,这第一个规范场论得以在物理学界传播开来。规范理论中的规范不变性,完美展示出了物理中的数学之美。这种数学上的对称性之美。此时也吸引着另一个年轻人,他就是杨振宁。
其实,杨振宁早在西南联大读书时,就已经产生了规范场的想法。后来在芝加哥大学做研究生时,在这方面也做过一些尝试。后来1950年,此时博士毕业的杨振宁就职于普林斯顿高等研究院,后来又到布鲁克海文国家实验室担任了一段时间的访问学者。
当时的布鲁克海文实验室,有着世界上最大的粒子加速器,此时正值粒子物理的爆发期,各种新粒子不断地被发现。随着越来越多新粒子的出现,原本的动力学方程中的计算项也越来越多,整个过程变得极其复杂。
对于这种问题,通常的做法是等到积累了足够数量的实验数据后,再去考虑怎么解决。但是此时的杨振宁已经意识到了,对于这些粒子间的相互作用,是时候需要一个新理论来描述了。而对称性的思想或许可以在这里面再次发挥作用。

于是他决定先拿原子核中的强相互作用开刀。我们知道原子核中,除了不带电的中子外,质子是带正电的。那么不同质子由于携带相同的电荷,它们之间应该相互排斥才对,为啥现实中它们却被牢牢的束缚在一起呢?
没错,主要就是因为他们之间除了电磁相互作用外,还存在一种比电磁作用更强大的相互作用。对,就是三体中打造水滴外壳需要的那种力-强力。和电磁相互作用中的电荷守恒类似,在强相互作用也存在一种守恒-同位旋守恒。
注意,同位旋并不是自旋,它不是角动量单位,它是一个无量纲的物理量。既然电荷守恒可以推导出电磁相互作用,那么同位旋守恒是否可以推导出强相互作用呢?
这个时候,和杨振宁同在一个办公室的博士研究生米尔斯也对该问题产生了兴趣,最终他俩解决了这个问题,并连续发表两篇论文。今天粒子标准模型的地基,杨-米尔斯规范场理论初具雏形。
不过,在文章的最后,两人提到了理论存在一个尚未解决的问题。按照他们的理论,有个场对应的规范粒子的质量出现了,不应该是零却是零的情况。当杨振宁讲到推导出的第一个公式时,怼神泡利一针见血“你这个场对应的质量是多少?”
杨振宁顿时一身冷汗,只能支支吾吾地说“我不知道,这个问题比较复杂。我们也研究过,但是没有明确的结论。显然泡利对他的回答并不满意,场面一度变得十分尴尬。泡利其实也考虑过,将规范场推广到强相互作用的问题,并且意识到了这里面存在着一个难以解决的质量问题。

那既然存在问题,为什么杨振宁他们还是执意发表论文?首先,勇气是必不可少的,不过杨振宁的这份勇气,很大部分来源于他的自信以及对美的执着。由于对细节问题的执着,数学之美显然没有被泡利充分领会,他更多注意到的是物理上的问题。
杨振宁一直对数学上的美情有独钟,对于如此优美的数学结构,他相信大自然理应如此。至于粒子质量问题,在数学之美面前,它已经显得没那么重要了。这种小问题应该只是暂时的,日后一定会被解决。
但是物理终究是物理,再美的理论也得解决问题才行。当时人们都认为,杨-米尔斯理论只是一种可能对物理有作用的数学结构。虽然结构本身很简洁,很优美,但是它并没有太多的物理意义。
所以物理界对于这个新理论,很长一段时间都没有引起重视。虽然杨-米尔斯理论一开始没被重视,但它构造出的非阿贝尔规范场模型,此后为所有已知,甚至是未知的粒子提供了一套统一的框架。为今后的粒子物理奠定了基础。
后来不光是强相互作用,包括电弱统一以及粒子标准模型,这些都将建立在该理论框架之上。如今“对称性支配相互作用”甚至已经成为了理论物理学家们的一个坚定信念。杨-米尔斯理论蕴含着巨大的能量。随着粒子物理的发展,它的能量将被逐渐释放。

大家都在看
-
探索宇宙,从10岁小神童开始!🚀🔭 10岁小神童开启宇宙探索小征程。10岁小神童开启宇宙探索小征程。在同龄人还在看卡通、玩积木时,10岁的三年级小宇已展现出非凡的科学天赋,成了大家口中的小神童。小宇痴迷天文,却苦于没有专业设备。他灵机一动,花 ... 宇宙探索01-28
-
宇宙的奇妙探索,从微观到宏观的奇妙之旅! 从长期宇宙演化的角度来看,宇宙中恒星的总数不会持续增加,反而会逐渐减少。核心原因在于两点:·一是宇宙中可用于形成恒星的氢、氦等星际气体正在不断消耗,且恒星形成的速率早已低于恒星消亡的速率。·二是随着宇 ... 宇宙探索01-26
-
人类该放下狭隘,让AI成为宇宙探索的终极火种 当人们还在纠结AI是否会“撒谎”、担忧AI超越人类的恐惧中裹足不前时,我总忍不住想:人类的认知与肉身,早已被宇宙的尺度划定了边界。与其困在地球的方寸之地内耗,不如坦然放手,让AI成为人类伸向宇宙的手,成为对 ... 宇宙探索01-25
-
天文学:探索宇宙的终极奥秘 摘要:天文学是研究宇宙天体及宇宙整体结构、起源与演化的基础学科,涵盖恒星、行星、星系、黑洞等各类天体,以及它们的运动规律、物理性质与化学组成。从古代的观星授时到现代的深空探测,天文学始终推动人类对宇宙 ... 宇宙探索01-23
-
人类探索宇宙的辉煌历程与未来使命 人类自古以来对宇宙的好奇推动了天文学的发展。从美索不达米亚人创造出的星图,到古希腊的观测,每个文明都留下了珍贵的记录,展现了对星空的向往。黑格尔曾言:“一个民族若有仰望星空的人,那它便充满了希望。”人 ... 宇宙探索01-17
-
摒弃自我,探索宇宙生命之光 文/星火燎原 人类文明的发展史,亦是一部宇宙认知的探索史。从古至今,我们始终仰望星空,试图理解自身在浩瀚宇宙中的位置与意义。然而,长久以来,一种根深蒂固的“人类中心主义”观念如同无形的桎梏,束缚着我们的 ... 宇宙探索01-16
-
2000年人类探索宇宙的三大关键转折 故事要从几千年前说起。那时候的人们对宇宙的认知,像极了童话故事:天空是一个巨大的圆顶,像一只巨大的天幕罩在地球之上。地球则是“方块”还是“圆球”?这个问题让古人费尽心思。为什么会有“天圆地方”说?古希 ... 宇宙探索01-16
-
我们也要有自己的哈勃了?还是加强版!巡天空间望远镜的新进展 当我们抬头仰望星空,试图看清宇宙深处的奥秘时,大气层的干扰就像隔着一层玻璃,阻碍了我们的视线。为了获得最清晰的宇宙图像,科学家将目光投向了太空。提起太空望远镜,很多人会想到著名的哈勃望远镜。而不久的将 ... 宇宙探索01-13
-
属于我们自己的星,中国空间站肉眼观测攻略 近几年的夜空中,除了亘古不变的星辰,你是否见过一颗明亮且会移动的“星”,它平稳地划过天际而不闪烁?那极有可能是我们中国人自己的太空家园——“天宫”空间站。中国空间站(素材来源于网络)如今,我们只需挑一 ... 宇宙探索01-12
-
为什么我们从未遇见外星人?大过滤器理论的可怕预言 1950年的某个中午,物理学家费米突然提出了一个震撼全球的问题:银河系有上千亿颗恒星,哪怕每一百万颗中只有一颗孕育生命,那也意味着:至少有十万个可能存在文明的星球。那问题来了:他们都去哪了?按理说,宇宙早 ... 宇宙探索01-09
相关文章
- 我们也要有自己的哈勃了?还是加强版!巡天空间望远镜的新进展
- 属于我们自己的星,中国空间站肉眼观测攻略
- 为什么我们从未遇见外星人?大过滤器理论的可怕预言
- 2025中国科技高光时刻:从民生温度到宇宙探索的全面爆发
- 探索宇宙的奥秘,你是否曾仰望星空?🌌✨
- 银河系中心黑洞高清照出炉!我们终于看清了宇宙 “巨兽” 的真面目
- 利亚德:《星际奇观:太阳系》VR宇宙探索沉浸体验展项目是德火科技的匠心之作
- 我们还有多久才能去宇宙探索
- 未来,仙女座星系会与银河系碰撞后合并?了解下“宇宙岛”星系
- 宇宙到底长什么样?这个问题让人着迷!
- 收音机里的“沙沙”声竟来自宇宙大爆炸?我们如何感受到不可见光
- 最新宇宙探索大新闻!带你了解银河系和太阳系的最新发现
- 既然黑洞不可见,又为什么能被拍摄到?关于黑洞的有趣知识
- 如何探索宇宙,研究宇宙的两种方法
- 2025科学三大新发现,彻底颠覆人类认知!
- 夜空中这么多的恒星从何而来?一文带你看懂恒星的诞生
- 启动“流浪地球”计划的原因,恒星的最终结局是什么
- 宇宙“任意门”虫洞全解析:从理论到现实的深度探索
- 未来十年太空旅游迎黄金期!四大趋势改写宇宙探索格局
- 人类首次清晰捕捉黑洞“舞步”,开启宇宙探索新视界
热门阅读
-
预言2030年太阳将休眠,恐怖的千年极寒将来临 07-11
-
中国十大元帅之死,多高寿而善终(林彪叛逃而死) 07-11
-
因果报应真实事例,做尽坏事必遭天谴 07-11
-
全球人口减少可能带来的六大教训和好处 07-18
-
离太阳最近的十大恒星排名,宇宙最大十大星球 04-12
