恒星有4种死法,且尸骸一个比一个厉害,它们的能量哪里来?
很多人知道,恒星死后会留下白矮星、中子星等尸骸,而且这些尸骸一个比一个厉害。但既然是尸骸,为啥还有那么大能量,还能够发光发热,甚至比恒星原来温度还高呢?今天我们就一起来探讨这个话题。
先简单说下恒星是什么

恒星是宇宙中最多的天体,其总质量占有可见物质的99.9%以上。我们仰望星空,看到星星99.99%都是恒星。恒星是自己发光发热的天体,是行星的母星。
所有的行星都是恒星形成过程剩下的渣滓组成,如我们太阳系,只有太阳一颗恒星,其质量就占有了整个太阳系的99.86%,八大行星和所有大大小小天体加起来,才占据了整个太阳系质量的0.14%。行星自身不发光,主要靠吸收恒星辐射提升温度。

恒星有大有小,像太阳这样的恒星属于中小质量恒星,最小的恒星质量只有太阳的8%,而最大的恒星质量有太阳的200倍。
再小再大的恒星一般很难存在,这是因为天体质量没有达到太阳的8%,核心就很难获得启动核聚变的温度和压力,就无法发光发热;而大于太阳质量200倍的恒星,剧烈核聚变的辐射压与巨大质量的引力压很难保持平衡,由此恒星极不稳定,会不断向太空抛撒外围物质。

恒星的寿命和归宿
恒星寿命是以质量来确定的,质量越小,寿命越长;质量越大寿命越短。这是因为恒星质量越大,核心压力和温度越高,核反应就越激烈,燃烧得就越快,反之就越慢。最大质量恒星寿命只有几百万年,而最小质量恒星寿命超过万亿年。
恒星也有生有死,质量不同的恒星,死法也不同。恒星的死法大致有四种,死去的恒星残骸(也可叫尸骸)也有4种,即黑矮星、白矮星、中子星、黑洞。

这几种尸骸一个比一个厉害,黑洞是顶级老大,是恒星死后最厉害的厉鬼,对宇宙中的一切通吃,就连这些尸骸也不会放过。
不过黑洞的无限引力范围是与质量成正比的,只要不去惹它,不进入其极端引力范围,还是比较安全的。

黑矮星是很多恒星的最终归宿。
宇宙中最多的恒星叫红矮星,这种恒星质量小,温度和亮度相对较低。红矮星质量一般在太阳的8%~50%之间,如果没到太阳质量的8%,天体核心达不到启动核聚变的温度和压力,就只能成为褐矮星或行星;质量再大的恒星,就类似太阳了。
这种小质量恒星由于中心压力和温度相对较低,核反应比较温和,消耗燃料相对较小,因此一生不会发生什么剧烈变化,只是将核心燃料慢慢消耗完就熄灭了,熄灭后的尸骸就叫黑矮星。

根据红矮星质量大小,寿命可达千亿年乃至数万亿年,而宇宙至今才诞生138亿年,因此迄今为止,所有的红矮星还正值青壮年呢,没有一个红矮星变成了黑矮星。
白矮星和中子星是大中型恒星的尸骸,形成后已经没有了新的能量产生,就会慢慢冷却,最终能量消耗殆尽,也会变成一个黑矮星。这个过程约需100~200亿年。
由此,在宇宙中还没有发现黑矮星。

白矮星是中等质量恒星的尸骸。
一般认为,太阳0.8倍以上,8倍以下的恒星,包括太阳,其在生命后期会发生红巨星膨胀,最后硝烟散尽,外围物质全部飘散到了太空,剩下中心一个致密的核,这个核就是白矮星。现在在宇宙发现了很多白矮星,距离我们8.6光年的天狼星,就是由一颗蓝矮星和一颗白矮星组成,蓝矮星质量是太阳2倍多,白矮星和太阳质量差不多,但其个头只有地球大小。

因此白矮星是一种高密度天体,密度可达到1~10吨/cm^3,白矮星表面温度刚形成时在10000℃左右,会发光,但光度较小,只有太阳光度的约千分之一到万分之一,加上体积很小,因此稍远就看不到。
恒星比白矮星体积和亮度都大许多,但现代最好的天文望远镜也很难看到其圆面,只能看到一个亮点。白矮星比恒星小,亮度又弱,因此就更难观测到了。尤其是在双星系统,主星的光芒会遮盖住白矮星暗弱之光,就更难看到了。

因此对白矮星的观测,一般是通过光谱分析得到的,或者用星冕仪等特殊设备,将主星光芒遮挡住,才能勉强看到一些距离较近的白矮星亮点,如天狼星B。
因为宇宙中中小质量恒星很多,死后的遗骸就是白矮星,现在宇宙寿命已经有138亿年了,应该有很多白矮星,有人估计,白矮星的数量占恒星总数的3~10%之间。现在发现的白矮星已经有1000余颗,1982年出版的白矮星星表,就列举了距离太阳不远,银河系中的488颗白矮星。

白矮星既然是尸骸,为什么还有光和热?
白矮星核心的核聚变早已熄灭,已经不产生能量,但为什么还会发光发热呢?这是因为白矮星本身就是原恒星的星核,星核本来就比原恒星表面温度高很多,比如太阳表面温度约6000度,核心温度为1500万度。而且在后续不断升级的氦核聚变过程,核心温度还会上升到数亿度,这样,当外围物质硝烟散尽,留下中心的碳核时,只是继承了原恒星的温度。

白矮星刚形成时,表面温度比原恒星更高,达到上万度,核心温度保持在上千万度。这些温度会源源不断地辐射出来,于是就还有光和热辐射。但由于不再有能量产生,白矮星会慢慢冷却,但这个冷却时间很长。冷却后的白矮星残骸也叫黑矮星。
白矮星质量一般在太阳的0.2~1.44倍以内,根据不同质量的白矮星,其冷却年限不同,一般需要100~200亿年。当白矮星完全冷却后,其高密度碳就形成结晶,成为一个巨大的钻石星球。但此“钻石”可不是地球钻石,密度达到10吨/cm^3,一个“钻石”戒指会像一个镣铐把你牢牢固定在某个位置。

中子星是大质量恒星的尸骸
中子星是质量为太阳8倍以上到30倍以下恒星的残骸。太阳质量8倍以上的恒星,核心温度和压力会导致从氢到铁以下的一系列核聚变发生,最终在核心形成一个铁球,核聚变熄灭后,恒星外壳的引力坍缩以亚光速撞击铁核,形成几乎相同速度的反弹激波,两股力量的碰撞,导致热核失控,就会以超新星爆发的方式结束自己的寿命。
如果核心残留质量超过了太阳的1.44倍,超新星大爆炸后就会留下一颗中子星尸骸。

中子星是非常极端的天体,质量达到太阳的1.44~3倍,而半径只有10千米左右,因此密度可达1~10亿吨/cm^3,表面重力是地球的上万亿倍,表面压强达到恐怖的10^28倍地球大气压,逃逸速度达到1万~15万千米/s,磁场强度可达1~20万亿Gs(而地球才0.7Gs,太阳才1000~4000Gs)。
中子星刚诞生时表面温度可达百万度,核心温度可达万亿度。由此,中子星会不断向太空发出强烈的能量辐射,强度达到太阳的100万倍。中子星继承了原恒星的角动量,体积缩得很小,因此旋转非常快,有的每秒数千转。

中子星极强的磁场会从磁极不断发射强射电波束,而中子星的磁极和自转轴不重叠,因此其旋转起来射电波束就像灯塔一样的在太空中扫描,有的扫过地球,这些极有规律的脉冲信号就被人类安装的射电望远镜所捕捉,这颗中子星就被称为脉冲星。
迄今为止,人类发现的中子星和脉冲星已经有数千颗,“中国天眼”(安装在贵州的500米口径球面射电望远镜,简称FAST),正式运行才1年多,就已经捕捉到了数百颗脉冲星。
中子星的能量也是原恒星能量的残留,慢慢冷却后也会变成一颗黑矮星。

黑洞是超大质量恒星的尸骸
黑洞是超大质量恒星死亡后留下的残骸,原恒星质量至少需要太阳的30倍以上(有的认为需要40倍以上)。这类恒星由于中心压力和温度极高,最终和形成中子星的原恒星一样发生热核失控,以超新星大爆发结束自己的一生。
由于这种超大质量恒星的引力坍缩压力和温度更高,核心质量留下的也更大,就会坍缩成一个黑洞,这个黑洞质量在太阳的3倍以上。

黑洞可以说是恒星的顶级尸骸,是通吃一切的厉鬼。进入黑洞的所有物质都坍缩到核心那个无限小的奇点上,这个奇点会在周围形成一个无限曲率的球形空间,这个空间的大小与黑洞质量成正比,叫黑洞视界或史瓦西半径。
史瓦西半径的计算方法为R=2GM/C^2,根据这个公式,一个质量为太阳3倍的黑洞,其史瓦西半径约9000米。在这个半径9000米的球状空间,任何天体靠近,不管这个天体的质量有多大,都只能被黑洞所吃掉,最后一点骨渣子也不剩。

黑洞很贪婪,永远吃不饱。
黑洞吃掉一切天体和物质后,质量就会越来越大,史瓦西半径也与质量成正比的扩大。人类已经发现宇宙最大的黑洞叫SDSS J073739.96+384413.2,其质量达到太阳的1040亿倍,史瓦西半径达到3120亿千米。这个黑洞还在不断地吞噬着恒星物质,继续壮大自己。
黑洞对所有的能量都吞到自己那个奇点上,就像貔貅只吃不拉,进入视界后,连光也无法逃逸,因此黑洞本来是无法看到的。

但由于黑洞存在着质量、电荷、角动量,一旦有星际物质靠近了视界,就会被黑洞捕捉,往中心拉扯,而靠近的物质由于黑洞角动量的带动,转速非常快,可达一半光速甚至接近光速,因此就会碰撞激发出巨大能量,发出耀眼的可见光和能量射线。

强大的能量喷流,还会从黑洞自转轴两端以接近光速发射到太空,在X波段产生炽热光芒。黑洞视界就是可见和不可见的分界线,所有物质在黑洞视界外都是可见的,一旦进入了视界,就化为乌有,只能看到一个黑咕隆咚的无底洞。
这样,人们就可以通过光学和射电、射线望远镜观测到黑洞,并能够计算出它的质量。

恒星尸骸还会借尸还魂,升级为黑洞。
由于白矮星和中子星都是极端天体,靠近它们的恒星等天体,都要自认倒霉,会被它捕捉和拉扯撕碎渐渐吃掉。白矮星和中子星通过吸积这些天体物质,就会不断壮大自己,当它们的质量到达某个临界点时,就会发生蜕变,成为更高一层的尸骸。

这两个临界点一个叫钱德拉塞卡极限,一个叫奥本海默极限。
白矮星的临界点是1.44倍太阳质量,叫钱德拉塞卡极限,当白矮星质量达到这个极限时,依靠电子简并压就再也无法支撑自身形态,这时会有两种归宿:一种是通过超新星大爆发,将自身炸得粉碎,成为一片星云;还有一种就是继续坍缩成为一颗中子星。

而中子星通过吸积,达到奥本海默极限时,中子简并压就无法支撑自身形态,就会继续坍缩成为一颗夸克星或者黑洞。现在人们还没有发现宇宙中有夸克星的存在,因此这还只是一种猜想。
奥本海默极限现在还没有一个准确的数值,有研究认为不旋转中子星的奥本海默极限是2.16个太阳质量,但不旋转中子星几乎没有,因此一般认为奥本海默极限在3个太阳质量以上。而现在宇宙中发现最小的黑洞,也在太阳质量3倍以上。

恒星质量与形成中子星和黑洞的误区
有人认为,1.44倍以上太阳质量恒星会形成一个中子星,3倍以上太阳质量恒星会成为一颗黑洞,这种认知是错误的。这么小的恒星是无法形成中子星和黑洞的,是否成为中子星或黑洞,要看大质量恒星在超新星大爆炸时,核心残留的质量。

因此,前面说的多大质量恒星会形成中子星或黑洞也是相对的,至于30倍还是40倍太阳质量恒星,在超新星大爆发后是留下一个中子星还是黑洞,关键还是要看恒星演化末期,核心残留质量有多大,达到钱德拉塞卡极限,就会成为中子星,达到奥本海默极限就会成为黑洞。

尸骸还会打架,爆发出巨大能量
在整个宇宙演化事件中,白矮星、中子星、黑洞之间,会发生黑吃黑的情况,还会发生自己相互碰撞的事件,尤其是中子星或黑洞在相互打架碰撞中,会激发出宇宙顶级天体事件,这就是发出伽马射线暴。
伽马射线暴是宇宙顶级能量爆发,其几秒钟或几分钟爆发出来的能量,甚至超过一个星系辐射能量总和,如果被这种能量击中,将会万劫不复,因此科学界认为,伽玛暴是宇宙最恐怖的顶级杀手。

有科学家认为,伽马射线暴杀灭了宇宙中90%以上的生命和文明,是宇宙文明难以发展到高级状态的重要原因之一。这或许也是人类迄今都无法发现地外文明的一个原因吧。
就说到这,欢迎讨论,感谢阅读。如喜欢我的文章,就给个点赞和关注吧,再次感谢。
大家都在看
-
封面解读:外星生命、暗物质、暗能量……宇宙探索之旅,出发! 当我们抬头仰望星空,是否曾想过,那些闪烁的星光背后,隐藏着宇宙怎样的秘密?《知识就是力量》2025年12月新刊封面正是一幅精心编排的宇宙探索地图。让我们跟随封面上的图案,踏上一场穿越时空的宇宙探索之旅。12月 ... 宇宙探索12-18
-
宇宙有多大?——科学视角一探索与认知- 引言宇宙的浩瀚与神秘一直是人类探索的终极命题。从古代天文学家仰望星空的梦想,到现代科学家利用先进的望远镜进行深空探测,关于“宇宙有多大”的问题一直激发着人类的好奇心和探索欲望。本文将结合最新的科学研究 ... 宇宙探索12-14
-
宇宙有多大?探索无垠的空间之谜 “宇宙有多大?”这是一个古老而又深刻的问题,激发了无数天文学家、物理学家乃至普通人对未知世界的无限好奇。从古代的天文学家仰望星空,到现代科学利用先进望远镜观测遥远星系,我们不断在探索宇宙的边界,试图理 ... 宇宙探索12-14
-
宇宙诞生时间大揭秘:一场跨越时空的探索 在人类对未知的无尽探索中,宇宙的诞生时间一直是一个极具吸引力的谜题。它大揭秘:就像一个神秘的宝藏,吸引着无数科学家和爱好者去挖掘真相。那么,宇宙究竟是什么时间诞生的呢?让我们一起踏上这场跨越时空的探索 ... 宇宙探索12-09
-
天文望远镜的演变史:人类探索宇宙的“神器”之路 你知道吗?我们今天能用望远镜看到遥远的星系、黑洞,甚至探索宇宙的起源,这一切都离不开几百年来不断创新的天文“神器”——望远镜。从古代的仰望星空到现代的超级望远镜,它的每一次突破都带领我们更接近宇宙的奥 ... 宇宙探索12-09
-
宇宙的奥秘探索:我们到底走了多远? 朋友们,你有没有想过,浩瀚的宇宙到底藏着什么秘密?从小仰望星空,看到那一颗颗闪烁的星星,心里是不是也会想:它们背后到底隐藏着什么?其实,关于宇宙的故事,就像一场永不停歇的冒险,充满了奇迹和谜题。今天就 ... 宇宙探索12-07
-
精妙绝伦的宇宙探索未解之谜 6个精妙绝伦的宇宙未解之谜,颠覆认知的星际谜题至今无解!宇宙浩瀚如穹顶,藏着无数超越想象的奥秘。从神秘的暗物质到诡异的黑洞奇点,从外星文明的猜想 to 宇宙的终极命运,这些未解之谜既牵动着科学家的探索神经 ... 宇宙探索12-03
-
用我们能读得懂的语言走进宇宙前沿知识——引力的了解和探索之中 在人类探索宇宙的漫长历史中,我们逐渐掌握了更多宇宙的秘密,宇宙的运行规则最终被归结为四种力,它们都非常神秘,难以理解,是宇宙探索的最前沿理论。而它们之中,引力与我们最为接近,也最容易被我们理解。它既是 ... 宇宙探索12-02
-
【标题】天文与宇宙探索带你走进神秘的星空世界,揭开宇宙的秘密 嘿,朋友们!你有没有想过,天上的那些星星到底藏着什么秘密?为什么我们能看到那么多星座?人类又是怎么一步步走进浩瀚宇宙的?今天就带你深入了解一下天文和宇宙探索的那些事,让你对星空有更酷、更震撼的认识!说 ... 宇宙探索12-02
-
70年后人类如何探索宇宙?中国科技馆“筑梦星球”展提供科幻答案 中新网北京12月1日电 (记者 孙自法)70年之后,人类会取得哪些重大科技突破?人们将如何进一步探索和利用宇宙空间?……中国科技馆最新推出的“筑梦星球”科幻主题展览,为这些问题准备了答案。最新推出的“筑梦星球 ... 宇宙探索12-02
相关文章
- 从1912到2025,宇宙射线起源探索终突破,中国观测站功不可没
- 无限与樊笼:论宇宙探索中的人类认知边界
- 地球存在如此多威胁人类的问题,为什么还要投资探索宇宙呢?
- 中国航天再破局!卫星天团探索宇宙,千年谜题即将揭晓
- 中国“太空天团”将出征!四颗卫星开启宇宙终极探索之旅
- 宇宙有多大:探索无垠星海的奥秘
- 太空科技强国:探索宇宙的未来之路
- 空间站:人类探索宇宙的新前沿
- 利多星智投:从大气层内到宇宙深空的探索——航空航天入门指南
- 实践三十号卫星的成功发谢,为人类探索宇宙奠定了基础
- 探索宇宙的奥秘::从地球到星际的奇幻旅程
- 火星变“地球2.0”要多久?为什么比想象中更难一万倍?
- 人类文明仅1秒,凭什么敢探索138亿年的宇宙?
- 浑天仪:凝聚古人探索宇宙的智慧(字载匠心·惊艳时光的中国智慧)
- 从一束激光到量子奇迹:普通人也能看懂的纠缠实验全解读
- 人类是怎么用望远镜探索宇宙的?背后的原理到底是啥?
- 全国仅十几所!这 5 所天文学强校含金量拉满,探索宇宙就选它们
- 国内天文学三强高校深度解析:A + 学科背后的宇宙探索密码
- 宇宙探索:从火箭到火星的太空旅
- “多维宇宙探索”启幕,2025上海城市空间艺术季浦东分展区点亮张江
热门阅读
-
预言2030年太阳将休眠,恐怖的千年极寒将来临 07-11
-
中国十大元帅之死,多高寿而善终(林彪叛逃而死) 07-11
-
因果报应真实事例,做尽坏事必遭天谴 07-11
-
全球人口减少可能带来的六大教训和好处 07-18
-
离太阳最近的十大恒星排名,宇宙最大十大星球 04-12
