宇宙也自转?
/ 宇宙也自转?
最近,发表在Monthly Notices of the Royal Astronomical Society上的一项新研究表明,宇宙可能会自转——只是非常缓慢。这一发现可能有助于解决天文学最大的难题之一。
目前的模型认为,宇宙向各个方向均匀膨胀,没有旋转的迹象。这一观点符合天文学家观测到的大部分现象,但却无法解释所谓的哈勃常数危机。简言之,测量宇宙膨胀速度有两种方法,但它们之间长期存在分歧。

图为陨石lar12252。
https://scx1.b-cdn.net/csz/news/800a/2025/the-universe-could-be.jpg
一种方法是通过观察遥远的爆炸恒星或超新星来测量星系的距离,从而得出过去几十亿年宇宙的膨胀率;另一种方法则是利用宇宙大爆炸产生的残余辐射,得出大约130亿年前极早期宇宙的膨胀率。两种方法给出的膨胀率并不一致。
研究团队建立了一个模型,它与标准模型基本相同,但往里添加了少量的旋转。这一微小的变化带来了巨大的不同:模型不仅与目前的天文测量结果相符,还与其他假设旋转的模型兼容。因此,说不定万事万物真的都会转动。模型表明,宇宙可能每5000亿年旋转一次,虽然速度太慢,很难探测到,但足以影响空间随时间的膨胀。
下一步,研究人员计划将该理论转化为一个完整模型,并努力找到方法来发现宇宙旋转的迹象。
来源 / https://phys.org/news/2025-04-slowly-universe-hubble-tension.html
/ 为星星“听歌算命”
科学家们发现,星震的“音乐”——由气泡破裂引起的巨大振动,会在许多恒星内产生涟漪——可以揭示更多关于恒星历史和内部运作的信息。在一项发表于Nature期刊的最新研究中,研究人员分析了距离地球近3000光年的M67星团中众多巨星的星震频率特征。
大多数恒星(比如太阳)的外层都有气泡,就像一锅沸腾的开水。炽热的气泡上升并在表面爆裂,会在整个恒星中激起涟漪,导致恒星以特定的方式振动。我们可以通过寻找恒星亮度的细微变化来探测这些以特定“共振频率”发生的振动。通过研究星团中每颗恒星的频率,我们就能听到来自星团的独特“歌声”。

图片来自Nature。
https://scx1.b-cdn.net/csz/news/800a/2025/scientists-find-eviden-3.jpg
正如地震能帮助我们研究地球内部一样,星震也能揭示恒星表面之下的情况。每颗恒星都会“唱”出一段旋律,其频率反映了内部结构和物理特性。较大的恒星产生更深、更慢的振动,而较小的恒星振动的频率更高。重要的频率特征之一是所谓的小间隔,即一组非常接近的共振频率。在太阳等较年轻的恒星中,这种特征可以提供线索,告诉我们恒星内核中还有多少氢可以燃烧。
星星就像化石记录,带有自己诞生之时环境的印记,研究它们可以让我们拼凑出银河系的故事;像M67这样的星团还能让我们一窥太阳的未来,洞察它在数十亿年中将经历的变化。这大概就是,“倾听”星星的声音,为星星“算命”。
来源 / https://phys.org/news/2025-04-astronomers-music-flickering-stars-unexpected.html
/ “恒星工厂”NGC 346
下图是来自哈勃空间望远镜的星团NGC 346,这是一个多产的“恒星工厂”,位于小麦哲伦云。小麦哲伦云是银河系最大的卫星星系之一,距离地球20万光年以外,位于杜鹃座。小麦哲伦云中比氦重的元素(天文学家称之为金属元素)的含量比银河系要少,因此其条件更类似于早期宇宙的情况。
NGC 346是2500多颗新生恒星的家园。在图片中,星团里质量最大的恒星发出强烈的蓝光,它们的质量是太阳的好几倍;发光的粉红色星云和蛇状的黑云则是由星团中明亮的恒星“雕刻”而成的。

NGC 346。
https://scx1.b-cdn.net/csz/news/800a/2025/hubble-spots-star-clus.jpg
哈勃精密的灵敏度和分辨率有助于揭开NGC 346恒星形成的秘密。利用哈勃的观测数据,研究人员追踪了NGC 346恒星的运动,发现它们正朝着星团中心螺旋状移动。这种螺旋运动是来自星团外部的气体流引起的,而这些气体流推动了恒星的形成。
这个星团的“居民”是恒星“雕刻家”,从星云中雕刻出一个个气泡——NGC 346中炙热的大质量恒星产生了强烈的辐射和猛烈的恒星风,冲击着它们诞生之所的滚滚气体,并开始驱散周围的星云N66。N66是小麦哲伦云中最明亮的HⅡ(发音为“H-2”)区域,它的存在表明这个星团的年龄还很年轻,只有几百万年。
来源 / https://phys.org/news/2025-04-hubble-star-cluster-ngc.html
/ 暗物质解开英仙星团碰撞之谜
最近,科学家们发现了英仙星团与一个巨大的、消失已久的天体相撞的直接证据,从而解决了一个长期存在的宇宙之谜。
星系团由成千上万的星系在引力作用下结合在一起,是宇宙中质量最大的结构之一。它们通过高能合并而成长——这是自宇宙大爆炸以来能量最强的事件之一。
英仙星团距离地球约2.4亿光年,其质量相当于600万亿个太阳。几十年来,天文学家认为一直它早已进入了一个稳定的合并后状态。由于缺乏明显的合并特征,英仙星团被誉为弛豫星团的“教科书范例”。

英仙星团和新发现的暗物质团块以及两者之间的“桥梁”。
https://scx1.b-cdn.net/csz/news/800a/2025/astronomers-uncover-th.jpg
然而,观测技术的进步使研究人员能够更深入地观察其结构,并发现过往碰撞的有力证据。这就产生了一个谜团:如果有碰撞的迹象,那么与之碰撞的天体在哪里?
为了解开这个谜团,研究小组分析了昴星团望远镜上的档案数据,然后发现了一个巨大的暗物质团块,其质量约200万亿个太阳,位于星团核心以西约140万光年处。它与英仙星团核心之间连接着一座“暗物质桥”,这为两者过去的引力相互作用提供了直接证据。
研究小组的模拟结果表明,大约50亿年前,这个暗物质子结构与英仙星团发生了碰撞,那次碰撞的残余物至今仍然产生影响。挑战普遍的共识需要勇气,但来自望远镜的确凿证据,总是比固有认知更有力。相关研究已发表在Nature Astronomy上。
来源 / https://phys.org/news/2025-04-astronomers-uncover-merger-companion-dark.html
/ “多色黑洞照片”第一步
近日,由哈佛史密松天体物理中心,西澳大学,韩国天文与空间科学研究所,上海天文台等全球二十个研究机构组成的国际天文学团队成功验证了一项名为“频率相位传递(FPT)”的突破性技术。该技术通过有效改正地球大气扰动效应,显著提升了事件视界望远镜(EHT)对极暗弱黑洞的观测能力,为下一代黑洞成像技术开辟了新的道路,相关成果发表于Astrophysical Journal。
EHT是由全球多台射电望远镜组成的观测网络,通过甚长基线干涉测量(VLBI)技术生成天文学领域最清晰的图像。这项将全球多台射电望远镜信号数字化合成为一个地球尺寸“虚拟”望远镜的技术,曾助力EHT团队完成人类历史上首张黑洞照片拍摄。除构建地球尺度望远镜的这一技术难题外,EHT还需穿过地球表面的湍流大气,这种大气扰动会干扰EHT望远镜收集的射电信号,限制成像的“曝光时间”,且观测波长越短,干扰影响越大,迫使EHT只能观测天空中最亮的几个天体。

图为参与FPT技术验证的三台望远镜(阵):西班牙IRAM 30米望远镜(右)、夏威夷亚毫米波阵列SMA(左上)与詹姆斯·克拉克·麦克斯韦望远镜JCMT (左下)。三台站观测数据的干涉条纹分别在上海天文台和美国哈斯塔克天文台同时处理获得。
http://shao.cas.cn/2020Ver/xwdt/kyjz/202505/W020250509846563706512_ORIGIN.png
研究团队联合位于西班牙内华达山脉韦莱塔峰的IRAM 30米射电望远镜、夏威夷莫纳克亚山的詹姆斯·克拉克·麦克斯韦望远镜(JCMT)及亚毫米波阵列(SMA)三台望远镜,证实了利用同一时刻的3毫米波段的大气测量数据可显著提升1毫米波段观测质量。首次在目前最短的1毫米波段、距离达到地球直径的基线上成功验证了FPT技术的可行性。该技术现已开始在EHT合作的观测台站部署,将使这个全球望远镜阵列达到前所未有的灵敏度。这一突破为未来观测更暗弱的黑洞及其他天体提供了关键技术支撑。
上海天文台于2016年开始在该研究方向进行了前瞻性部署和技术攻关,利用FPT技术(和更进一步的源频相位参考技术)通过美国VLBI阵列在长毫米波段(13/7/3毫米)观测成功验证,获得多项有意义的科学观测成果,比如首次在3毫米波段实现对近邻暗弱活动星系核M81,M84等的成像,通过核移测量定位首张黑洞照片中M87黑洞的位置等。此外,上海天文台团队牵头撰写了基于FPT技术的下一代EHT(ngEHT)科学观测白皮书。目前,上海天文台正在积极推进天马望远镜长毫米波三频(13/7/3毫米)接收机的研制,预计2025年完成并加入全球多波段联测,并将多频接收机技术列为自主建设亚毫米波望远镜的关键技术。
来源 :http://shao.cas.cn/2020Ver/xwdt/kyjz/202505/t20250509_7649534.html
来源:中国国家天文
编辑:紫竹小筑
转载内容仅代表作者观点
不代表中科院物理所立场
大家都在看
-
天文学界的奇才:第谷·布拉赫与《鲁道夫天文表》的辉煌传奇 尊敬的读者朋友们,今天我们要走进16世纪末丹麦天文学的璀璨星空,探寻一位天才科学家的非凡人生——第谷·布拉赫(1546—1601)。他不仅是天文学史上的传奇人物,更是推动天文学发展不可或缺的关键人物。让我们从他 ... 天文之最12-03
-
古希腊第一学霸!亚里士多德:从天文学到教育学的全能大师 朋友们,今天咱们聊聊一个古希腊超级牛的人物——亚里士多德。你可能听说过他是个哲学家,但其实,他的影响远不止哲学这么简单!他可是古希腊最厉害的“全能选手”,在天文学、物理、数学、教育学等等方面都扮演了超 ... 天文之最12-03
-
第谷·布拉赫戴金鼻子天文狂人,用20年守望为人算准了宇宙的时间 在科学史上,有些人像闪电,划破长空、瞬间照亮真理——比如牛顿;有些人则如灯塔,在漫长的黑夜里默默燃烧,只为给后来者指引方向。今天我们要讲的这位人物,就是那座矗立于16世纪欧洲夜空下的灯塔——第谷·布拉赫 ... 天文之最12-03
-
“托勒密:古代天文学的巅峰大师,影响千年的希腊化天才” 在浩瀚的历史长河中,托勒密无疑是古代最具传奇色彩的天文学家、地理学家和光学大师之一。他生活在公元90年至168年左右,出生于埃及的希腊化城市赫勒热斯蒂克(今赫利奥波利斯)。那个时代,希腊文化与埃及文明交融 ... 天文之最12-03
-
第谷·布拉赫(1546----1601)丹麦天文学界的奇才 第谷·第谷。布拉赫:用天文望远镜开启宇宙新纪元】大家好!今天要为大家介绍一位被誉为“天文学奇才”的伟大人物——第谷·布拉赫(Tycho Brahe)。他用非凡的天文观测和不懈的探索精神,为人类揭开了宇宙的神秘面 ... 天文之最12-02
-
第谷·布拉赫是谁?他如何用天文表改变了天文学的未来? 在17世纪的天文学发展史上,有许多伟大的天文学家为人类认识宇宙作出了不可磨灭的贡献。而在这些伟人中,丹麦天文学家第谷·布拉赫(Tycho Brahe,1546—1601)以其非凡的天文观测技术和精确的天文数据,成为天文学 ... 天文之最12-01
-
第谷·布拉赫:天文学的奇才与《鲁道夫天文表》的传奇 在星辰璀璨的历史长河中,有一些天才的名字永远镌刻在天文学的殿堂里。第谷·布拉赫(1546—1601),这位来自丹麦的天文学奇才,以其非凡的观察能力和卓越的天文成就,成为17世纪天文学界的璀璨明星。他的名字不仅代 ... 天文之最12-01
-
他曾被誉为古代最牛天才!托勒密的神奇世界,竟影响了我们几百年 嘿,朋友们!今天咱们来聊聊一个超级厉害的古代天才——托勒密。听名字可能有点陌生,但你绝对用过他的一些“遗产”。他是古希腊化时期的天文学家、地理学家、占星学家、光学家,简直是个“全能选手”。而且,他的那 ... 天文之最12-01
-
托勒密:古代天文学的巅峰巨匠,开启科学认知的黄金时代 穿越时空的智慧火炬——托勒密的历史地位与影响在漫长的人类文明史中,少有像托勒密那样,将天文学、地理学、光学等多个学科融为一体,奠定了西方科学基础的伟大人物。他的思想不仅在古代引领科学的潮流,也深刻影响 ... 天文之最11-30
-
标题: 古希腊最牛的哲学大神!亚里士多德到底有多牛? 嘿,朋友们!今天咱们来聊聊那个古希腊的“全能王”——亚里士多德。这哥们儿不仅是哲学界的大咖,还是科学、教育、甚至天文学的“多面手”。你可能听说过他的名字,但你知道他到底有多厉害吗?一起来扒一扒这个古代 ... 天文之最11-30
相关文章
- 第谷·布拉赫:天文学的奇才与《鲁道夫天文表》的传奇
- 他曾被誉为古代最牛天才!托勒密的神奇世界,竟影响了我们几百年
- 托勒密:古代天文学的巅峰巨匠,开启科学认知的黄金时代
- 标题: 古希腊最牛的哲学大神!亚里士多德到底有多牛?
- 第谷·布拉赫:天文观测的巨人,科学革命的关键人物
- 【天文界的“算命大师”!第谷·布拉赫和开普勒的星空传奇揭秘
- 布拉赫:丹麦天文学的奇才,他用星辰点亮人类的未来
- 天文学的奇才一一第谷·布拉赫
- 标题:【第谷·布拉赫:天文学的奇才与开普勒的科学引路人】
- 天文学的巨人之肩—第谷·布拉赫:用天文仪器改变世界的丹麦天才
- “天文奇才第谷·布拉赫:用天文望远镜绘出宇宙的精确蓝图
- 第谷•布拉赫:天文学的奇才与《鲁道夫天文表》的辉煌成就】
- 第谷·布拉赫:天文学奇才与《鲁道夫天文表》的开创者
- 揭秘全球时间的起点:你知道格林尼治天文的故事吗?
- 天文学的“幕后英雄”——第谷·布拉赫:丹麦天才的辉煌与遗憾
- “天文学奇才第谷·布拉赫:从丹麦王宫到星辰大海的科学巨擘”
- 托勒密:古代天文学的‘大神’,他到底有多牛?
- 【第谷·布拉赫:天文学的巨人,开启科学的新时代】
- 【第谷·布拉赫:丹麦天文学的奇才与天文表的巅峰之作】
- 《中国古天文学大成》时隔3000年史上首次破译武王伐纣的真实天象
热门阅读
-
龙生九子名字及图片 传说龙生性最淫生下九子 07-13
-
彭罗斯阶梯是个走不完的楼梯,用二维视角呈现出来 07-13
-
半老徐娘指多少岁?徐娘忍受不了折磨选择自杀 07-13
