在时间的深处,发现地球的秘密
作者:林颐
137.7亿年前,我们的宇宙从一个无穷密度的点(奇点)中诞生。45.5亿年前,一个由岩石和尘埃组成的球体形成了一颗年轻的行星,那便是我们的地球。又过了将近10亿年,最古老的生命讯息开始出现。
从那之后,直到如今,我们的地球经历了无数的故事,这其中包括我们人类自身。所有的故事都与我们人类发生着密切纠结的联系。这些故事,该从哪里讲起呢?
“深时”之美,从宇宙星辰到人类文明
“深时”(Deep Time)是塑造我们星球地质事件的时间尺度。
这个时间尺度包括了岩石、冰川、钟乳石、古老的植物、参天的大树、不起眼的菌种、海床沉积物和漂移的地壳板块……它的计量单位不是“分”和“年”,而是“世”和“宙”,它就是地球那浩瀚悠长的历史。

《深时之美:从宇宙星尘到人类文明,跨越45亿年的地球故事》 [美]赖利·布莱克 著 刘小鸥 译 北京科学技术出版社出版
《深时之美》作者赖利·布莱克,是“侏罗纪世界”系列电影常驻古生物学家。该书集合了新近研究成果,选取50个时间点,从远古化石到“天外来客”,从哈勃深场到最后一头猛犸象,简洁的语言搭配高品质的200幅图片,描绘出地球故事中那些扣人心弦的精彩时刻。这是一部地球地质变迁史、一部生态系统的演化史诗。
作者说:“时间实际上是一个维度,也就是构成我们宇宙的一个部分,它允许空间中的一个物体在该空间中处于多个位置。”我们的宇宙始于137.7亿年前的大爆炸,可能是作为别的宇宙的一部分而诞生的,这解释了我们的宇宙在早期经历的那段低熵时期以及缓慢的进化。进化尽管缓慢,但是,一直在进行着。研究人员通过测试锆石确定,澳大利亚西部杰克山区的地层具有超过43亿年的历史;发生在约25亿年前的“大氧化事件”改变了地球的贫氧环境,创造了生命条件;我们身体细胞中的线粒体可以追溯到近15亿年前;约5.75亿年前,早期动物出现……
该书涉及很多考古学证据、化石研究、地质考察和古生物学。比如,约5000万年前,印度洋板块与欧亚大陆相撞,推起了喜马拉雅山脉;奥杜瓦伊峡谷的化石可以追溯到190万年前古人类的活动迹象;约30万年前,解剖学意义上的现代人类在东非大裂谷出现,他们在约十万年前走出非洲;北美洲的巨石是二万年前冰川漂砾的证据……大约一万年前,人类能从如今的欧洲内陆一路步行到英格兰。对比我们现在的地理格局,人类居住区域的变化显得既漫长又短暂,在这个过程中,时间不断分岔,通向每一个可能的未来,而进化按照自身的需求做出了每一个有条不紊的选择。
时间有很多表现形式。我们的双眼还能看见、我们的双手还能触摸到的最美的那一个,可能是该书结尾提及的,美洲怀特山脉至今依然存活着的那株4850多岁的狐尾松……
植物,地球进化的最好证据
一年又一年,一圈又一圈的年轮。树以自己独特的方式,打造了地球进化模式的参照系。作为我们星球最老最老的过去,树可以告诉我们许多许多。
比如,谢尔曼将军,生活在加利福尼亚巨杉公园的一位“老人家”,据说它已经2200岁了。这是来自纽约布鲁克林的艺术家蕾切尔·萨斯曼旅途的第一站。在那里,她找到了树轮年代学家内特·斯蒂芬逊。树木年代学不仅能确定树的年龄,还能用来推断遥远年代的气候环境。干旱期缓慢生长,丰年茁壮生长,从年轮来看,丰年的要更宽一些。有经验的科学家还能够据此推论厄尔尼诺现象等灾异天气及其发生的年份。

《世界上最老最老的生命》 [美]蕾切尔·萨斯曼 著 刘夙 译 北京大学出版社出版
萨斯曼穿越从北极到美国莫哈维沙漠在内的五大洲,拍摄了30种已经存活2000年以上的罕见古树,不管岁月如何变迁,它们倔强地、孤傲地伫立着。另外,还有菌类、蕨类和藓类植物。这些生物被萨斯曼的镜头摄入,并经由她的笔端将隐藏的故事呈现给我们,形成了《世界上最老最老的生命》这部作品。
5000岁的长寿松很有智慧,如果环境艰难,它们就关闭所有非必需的系统,等待环境改善后,只需凭借一根尚有生命力的枝条,它们就能复活;12000岁高龄的三齿团香木,别名“克隆王”,新茎不断替换旧茎,不断进行自我更新;格陵兰岛看似荒芜的土地上,点缀着星星落落的地衣,它们寄生在贫瘠的岩石和冻土的表层,生长一厘米就需要花费一百年;西伯利亚放线菌也差不多情况,显微镜都难以观察到它们的活动,但它们活着,就这样活了50万年;桉树具有很大的多样性展现空间,经历13000年的时光,它们成为了澳洲生物链的重要环节,我们喜爱的憨憨小考拉就是以桉树叶为食的动物……
在这部科普摄影作品里,作者所展示的,不是关于时间的理论推测,而是我们可以直观感受的生命事实。这些由溯源本初和描绘当下交汇而成的文字与图像,讲述着统一与断裂、连续与破碎、坚守与变化的故事,这是植物所知道的最深处的时间秘密。
身处幽暗密林,透过树叶望见光亮,那一定是自古以来,人类对光明本能的渴望。
追光者,捕捉每一颗星
“初光”(First Light)是个科技术语,指的是打开新望远镜的遮光罩,让星光第一次落在反射镜和传感器上。从科学角度,这是发明者检测设备能否正常运行的必要步骤。但是,“初光”这个词又极具诗意。科学家和发明家都是一些浪漫的理想主义者吧,不然,是什么支撑他们经年累月地埋头从事枯燥寂寞的工作呢?

《初光:探寻宇宙的边缘》 [美]理查德·普莱斯顿 著 姚向辉 译 上海译文出版社出版
至少,《初光》里的人们是这样的。理查德·普雷斯顿,美国非虚构作家,《初光》是他的首部非虚构作品,获得了美国物理学学会的科学写作奖。普雷斯顿的代表作《血疫》可能很多人都知道,写得很有在场感,栩栩生动,在非虚构写作中融入了小说式的对话和细节,这些都经过对当事人或相关人员的再三考证和严格的事实核查。《初光》也是如此,事先进行了大量的走访,确保书中的描述符合人物的记忆,得到他们的认可。
《初光》的主角是一群天文学家和天文爱好者,此外,还包括“大眼睛”。“大眼睛”是昵称,它的真身是200英寸口径的海尔望远镜,坐落于加利福尼亚南部帕洛马山顶上的一个圆顶中,这台巨型望远镜有七层楼高,修建于1930年代,以提出设想的天文学家乔治·埃勒里·海尔命名。这台望远镜建造以来一直在工作,围绕着它的故事数不胜数。
为了建造望远镜,海尔付出的代价是神经官能症。海尔分不清现实与幻想,他总是听到矮精灵在他耳边低语宇宙的秘密。“大眼睛”是疯狂的设想,而他竟然找到很多科学家,帮他把它变成了真的,这台时间机器重新展现了过去的事件,太阳射出的光需要八分钟才能到达地球,那么,其他星辰呢?还有,那些人类尚未发现的星星,它们藏在哪里呢?在海尔之后,不断有人加入团队,成为“大眼睛”的守护者,共同缔造帕洛马天文台的传奇。
书中落墨较多的另一个科学家,叫詹姆斯·冈恩,一个奇怪的天才,极其吝啬,总是在垃圾堆里翻检原材料,用它们去拼装望远镜,可想而知,作者说冈恩制作的东西很难一次成功,确切地说,从来没有一次就成功过。经历无数“初光”的时刻,冈恩成为当代最优秀的天文学家之一。从1990年代起,冈恩启动斯隆数字巡天计划,用一架2.5米口径的望远镜扫描北半球的星空,目的是绘制一张彩色的三维电子宇宙地图。该项目拍摄了数亿个天体的图像以及数百万天体的光谱,并向全世界公开。这是历史上最成功的巡天项目,直接改变了天文学家的工作方式,天文学从此进入大数据时代。
世界上有捕光者,喜欢抬头看天,也有另外一些人,喜欢低头观察我们的地球,而我们的地球71%是由水构成的,于是,他们成为了“读水人”。
“读水人”,解读每一滴密码
你有没有注意过这个现象?当我们把毛笔浸入水中,水就迅速沿着刷毛往上流动。这显然违背了地球重力的规则,为什么会这样呢?
这种现象叫“毛细作用”。水的表面并不是平坦的,而是“弯月面”的。这意味着水面会受到它上面材料的吸引,于是水被往上拉,又因为开口太过狭窄从而使得液体的整个表面都被向上拉动,由于水的这种“弯月面”效应,较下一层水面下的水也跟着被拉了上去,开口越狭窄,这种效应就越明显。我国今年暴雨频繁,原因之一就在于此。因为台风带来的大暴雨让水分子拥挤在一起,很难疏散,这时候的水受到向上的吸引力,就容易泛滥。

《水的密码》 [英]特里斯坦·古利 著 许丹 译 译林出版社出版
以上知识来源于《水的密码》,一部知识含量丰富并且有趣的科普佳作。作者特里斯坦·古利,是英国皇家航海学会和皇家地理学会会员。该书涉及世界上的大江大海,也包括我们家门口的水坑、附近的池塘与溪流。即使玻璃窗、浴缸和茶杯,也有着水滴溅落的科学诠释。
如何在池塘中看见太平洋?古利站在池塘岸边,风吹过水面时,涟漪一圈一圈地向石块涌去,石头的下风区有一片平静的池水,它是池面中央附近唯一的一片静水,这便是“无涟漪区”。古利想起了探险家库克船长的航行,库克船长当年就是利用“无涌区”躲避太平洋的海浪,完成了使命。古利说,只要愿意去寻找,我们每个人都能发现这些迹象。
该书包括了很多知识普及:流体动力学,水生昆虫仿生学,温跃层实验,声光水下传播,离岸流、底流、漂移等沙滩现象,潮汐与天文学,奇妙的海市蜃楼……月盈月亏,水涨水落,自然界的密码等待我们解读。作者行文流畅,讲述从容,信息密集,擅长捕捉细节。比如,作者描述在喜马拉雅山脉如何寻找水源。邂逅喜马拉雅凤仙花之时,静下来,欣赏它紫色的花朵以及果皮爆裂的声音——这个声音暗示了附近可能存在水源,因为空气中的水分引起了花朵的变化。这种知识是多么原始而又实用啊,可惜的是,现在还有多少人能静下心来“读水”呢?
抬头望天,俯首看地。我们智人存在的时间,譬如宇宙中的尘沙、江河里的水滴,我们所拥有的,不过是这颗星球以及生存其上的生灵给予我们的馈赠。我们努力解读地球的秘密,不应当是为了耗竭资源的贪婪索取,而是寻找与这个星球共存的更好的方式。(林颐)
大家都在看
-
天文学界的奇才:第谷·布拉赫与《鲁道夫天文表》的辉煌传奇 尊敬的读者朋友们,今天我们要走进16世纪末丹麦天文学的璀璨星空,探寻一位天才科学家的非凡人生——第谷·布拉赫(1546—1601)。他不仅是天文学史上的传奇人物,更是推动天文学发展不可或缺的关键人物。让我们从他 ... 天文之最12-03
-
古希腊第一学霸!亚里士多德:从天文学到教育学的全能大师 朋友们,今天咱们聊聊一个古希腊超级牛的人物——亚里士多德。你可能听说过他是个哲学家,但其实,他的影响远不止哲学这么简单!他可是古希腊最厉害的“全能选手”,在天文学、物理、数学、教育学等等方面都扮演了超 ... 天文之最12-03
-
第谷·布拉赫戴金鼻子天文狂人,用20年守望为人算准了宇宙的时间 在科学史上,有些人像闪电,划破长空、瞬间照亮真理——比如牛顿;有些人则如灯塔,在漫长的黑夜里默默燃烧,只为给后来者指引方向。今天我们要讲的这位人物,就是那座矗立于16世纪欧洲夜空下的灯塔——第谷·布拉赫 ... 天文之最12-03
-
“托勒密:古代天文学的巅峰大师,影响千年的希腊化天才” 在浩瀚的历史长河中,托勒密无疑是古代最具传奇色彩的天文学家、地理学家和光学大师之一。他生活在公元90年至168年左右,出生于埃及的希腊化城市赫勒热斯蒂克(今赫利奥波利斯)。那个时代,希腊文化与埃及文明交融 ... 天文之最12-03
-
第谷·布拉赫(1546----1601)丹麦天文学界的奇才 第谷·第谷。布拉赫:用天文望远镜开启宇宙新纪元】大家好!今天要为大家介绍一位被誉为“天文学奇才”的伟大人物——第谷·布拉赫(Tycho Brahe)。他用非凡的天文观测和不懈的探索精神,为人类揭开了宇宙的神秘面 ... 天文之最12-02
-
第谷·布拉赫是谁?他如何用天文表改变了天文学的未来? 在17世纪的天文学发展史上,有许多伟大的天文学家为人类认识宇宙作出了不可磨灭的贡献。而在这些伟人中,丹麦天文学家第谷·布拉赫(Tycho Brahe,1546—1601)以其非凡的天文观测技术和精确的天文数据,成为天文学 ... 天文之最12-01
-
第谷·布拉赫:天文学的奇才与《鲁道夫天文表》的传奇 在星辰璀璨的历史长河中,有一些天才的名字永远镌刻在天文学的殿堂里。第谷·布拉赫(1546—1601),这位来自丹麦的天文学奇才,以其非凡的观察能力和卓越的天文成就,成为17世纪天文学界的璀璨明星。他的名字不仅代 ... 天文之最12-01
-
他曾被誉为古代最牛天才!托勒密的神奇世界,竟影响了我们几百年 嘿,朋友们!今天咱们来聊聊一个超级厉害的古代天才——托勒密。听名字可能有点陌生,但你绝对用过他的一些“遗产”。他是古希腊化时期的天文学家、地理学家、占星学家、光学家,简直是个“全能选手”。而且,他的那 ... 天文之最12-01
-
托勒密:古代天文学的巅峰巨匠,开启科学认知的黄金时代 穿越时空的智慧火炬——托勒密的历史地位与影响在漫长的人类文明史中,少有像托勒密那样,将天文学、地理学、光学等多个学科融为一体,奠定了西方科学基础的伟大人物。他的思想不仅在古代引领科学的潮流,也深刻影响 ... 天文之最11-30
-
标题: 古希腊最牛的哲学大神!亚里士多德到底有多牛? 嘿,朋友们!今天咱们来聊聊那个古希腊的“全能王”——亚里士多德。这哥们儿不仅是哲学界的大咖,还是科学、教育、甚至天文学的“多面手”。你可能听说过他的名字,但你知道他到底有多厉害吗?一起来扒一扒这个古代 ... 天文之最11-30
相关文章
- 第谷·布拉赫:天文学的奇才与《鲁道夫天文表》的传奇
- 他曾被誉为古代最牛天才!托勒密的神奇世界,竟影响了我们几百年
- 托勒密:古代天文学的巅峰巨匠,开启科学认知的黄金时代
- 标题: 古希腊最牛的哲学大神!亚里士多德到底有多牛?
- 第谷·布拉赫:天文观测的巨人,科学革命的关键人物
- 【天文界的“算命大师”!第谷·布拉赫和开普勒的星空传奇揭秘
- 布拉赫:丹麦天文学的奇才,他用星辰点亮人类的未来
- 天文学的奇才一一第谷·布拉赫
- 标题:【第谷·布拉赫:天文学的奇才与开普勒的科学引路人】
- 天文学的巨人之肩—第谷·布拉赫:用天文仪器改变世界的丹麦天才
- “天文奇才第谷·布拉赫:用天文望远镜绘出宇宙的精确蓝图
- 第谷•布拉赫:天文学的奇才与《鲁道夫天文表》的辉煌成就】
- 第谷·布拉赫:天文学奇才与《鲁道夫天文表》的开创者
- 揭秘全球时间的起点:你知道格林尼治天文的故事吗?
- 天文学的“幕后英雄”——第谷·布拉赫:丹麦天才的辉煌与遗憾
- “天文学奇才第谷·布拉赫:从丹麦王宫到星辰大海的科学巨擘”
- 托勒密:古代天文学的‘大神’,他到底有多牛?
- 【第谷·布拉赫:天文学的巨人,开启科学的新时代】
- 【第谷·布拉赫:丹麦天文学的奇才与天文表的巅峰之作】
- 《中国古天文学大成》时隔3000年史上首次破译武王伐纣的真实天象
热门阅读
-
龙生九子名字及图片 传说龙生性最淫生下九子 07-13
-
彭罗斯阶梯是个走不完的楼梯,用二维视角呈现出来 07-13
-
半老徐娘指多少岁?徐娘忍受不了折磨选择自杀 07-13
