无限还是有限?宇宙之最:光速的前世今生
在17世纪以前,人们普遍认为光是瞬时传播的。这种看法是有依据的,人们观察到在月食期间,地球在月球上的投影位置没有肉眼可见的延迟现象。如果光速c是有限的,那么这种延迟就应该能被观察到。

现在,我们知道了这是因为光的移动速度太快了,以致于这种延迟现象难以察觉。伽利略对光速是无限的这种结论持怀疑态度,所以他设计了一个实验来测量光速。实验通过手动调整放置在相隔几英里的灯笼的亮暗进行。我们不知道他是否尝试了这个实验,但是c的值太大了,通过这种方法哪怕是给出一个近似精确的答案也很难。

Olaus Roemer(奥劳斯.罗默)在1676年首次测量出了光速c。他观察到,根据地球-太阳-木星的的位置关系,木星的卫星发生日食的预测时间和这些日食被观察到的实际时间之间有高达1000秒的差异。他正确地推测出了这是因为,由于木星和地球之间的距离变化,光从木星传播到地球的时间长度发生了变化。他得出光速c的值为214000公里每秒,这与实际的光速值很接近,因为当时还不知道精确的行星之间的距离。

在1728年,James Bradley(詹姆斯.布拉德利)通过观察恒星光行差给出了另一个估计方法。恒星光行差是由于地球围绕着太阳运动而引起的恒星的表观移位现象。他观察到了天龙座的一颗恒星,并发现它的位置在一年中发生了变化。所有的恒星的位置都受到同样的影响。(这将恒星光行差和视差区分开来,视差对附近的恒星的影响比远处恒星的影响更大。)

图解:光行差可以由速度叠加的原理解释。在沿EE'方向运动的观察者看来,天体S好像位于S'的方向。
为了理解这种光行差,一个比较有用的类比是,想象一下当你在雨天奔跑时,你的位置对于雨滴落在你身上的角度的影响。如果你静止地站在没有风的雨里,那么雨滴会垂直的打在你的头上。如果你在雨中奔跑,那么雨滴就会形成一个角度落在你的前面。布拉德利测量了光线的角度,在地球围绕太阳的转速已知的情况下,他计算出了光速的值为301000千米每秒。

1849年,Armand Fizeau(阿曼德.菲索)首次没有利用宇宙中的关系计算出了c值。他使用了8公里外的镜子反射出的光束。该光束对准了一个快速旋转的齿轮的齿。齿轮的速度不断增加,直到光束的双向通道与齿轮上一个齿绕圆周的运动轨迹重合。上述过程测量出的光速c结果为315000千米每秒。Leon Foucault(利昂·福柯)在一年后使用旋转镜对这一结果进行了改进,给出了更精确的光速值即298000千米每秒。他的测量技术很好,足以验证光在水中的传播速度比空气中更慢。

在麦克斯韦发表了他的电磁学理论之后,通过测量自由空间的磁导率和电介电常数来间接计算光速成为了可能。这一过程在1857年由韦伯(Weber)与鲁道夫·科尔劳施(Rudolf Kohlrausch)首次实现。1907年,Rosa and Dorsey通过这种方式得到了光速值299788千米每秒。这是当时最精确的光速值。
随后有很多其他的技术被用来进一步提高测量值c的精度,由于c是光线在真空中传播的速度,很快校正空气的折射率变得很有必要。1958年,Froome利用微波干涉仪和克尔盒快门得到了光速值为299792.5千米每秒。1970年以后,具有极高光谱稳定性和精确铯原子钟的激光的发展使更好的测量成为了可能。在那之前,米的定义一直在变化,这种变化阻碍了光速测量的精确性。

但是到了1970年,光速的误差已经达到了正负1m /s之间。以米为单位来确定c的值并使用原子钟和激光来测量精确的距离成为更实际的选择。现在,真空中的光速被定义为以标准单位给出的一个精确的固定值。自1983年以来,国际上达成共识将米定义为光在真空中1/299,792,458秒的间隔内走的距离。这使得光速精确到299792.458千米每秒。(另外,因为英寸现在被定义为2.54厘米,光速也有一个用英制单位定义的精确值。)这个定义只有在真空中光速被所有的观察者测量到具有相同的值时才有意义;一个有待实验验证的事实(参见相关的FAQ文章“光速是恒定的嘛?”)。至于光在如空气和水等介质中传播的速度还需要通过实验来进行测量。
下表给出了根据Froome和Esse实验结果的最佳测量值:

参考资料
1.Wikipedia百科全书
2.天文学名词
3. math-逐风
如有相关内容侵权,请于三十日以内联系作者删除
转载还请取得授权,并注意保持完整性和注明出处
大家都在看
-
中国首个星际航行学院成立!大学“最无用”的专业是时候翻红了! 今天上午,中国科学院大学“星际航行学院”正式成立了。图源:微博@央广网学院一口气新添了 22 门核心课,像星际动力与推进原理、星际航行环境感知与利用、行星动力学与宜居性、星际社会学等等,光听名字就觉得下一 ... 天文之最01-28
-
第谷·布拉赫:天文学界的奇才,开启精确天文观测新时代 引言在科学史的长河中,天文学作为一门古老而又不断发展的学科,曾经历过无数伟大天文学家的努力与探索。从古希腊的托勒密到哥白尼,再到伽利略、开普勒,每一位天文学家的出现都极大地推动了人类对宇宙的认知。而在 ... 天文之最01-27
-
天文学的隐形巨人——第谷·布拉赫:用天文望远镜开启精确时代 大家好,今天我们来聊一位天文学界的“隐形巨人”——第谷·布拉赫(Tycho Brahe),他或许不像伽利略、开普勒那样家喻户晓,但他的贡献却奠定了现代天文学的基础,堪称“天文界的桥梁人物”。一、他是谁?——丹麦 ... 天文之最01-27
-
古希腊最牛学霸!亚里士多德:从天文学到教育学啥都懂 嘿,朋友们,今天给你们带个“古希腊超级学霸”的故事,名字叫亚里士多德。别看他是几千年前的人,但他的“学霸范儿”可是杠杠的,啥都懂,从天文学到教育学,简直就是“百科全书”本人。先说,他是个“天才少年”。 ... 天文之最01-26
-
天文学巨匠:第谷·布拉赫——丹麦天才的璀璨星辰之路 大家好,我是你们的历史人物研究分享博主。今天我们将深入探讨一位天文学界的传奇人物——第谷·布拉赫(Tycho Brahe),这位丹麦天才不仅以其精确的天文观测闻名,更以其复杂的人格、丰富的生活故事和不凡的科学精 ... 天文之最01-26
-
银河系到底有多大?用3个生活化对比,让你秒懂宇宙尺度 咱们抬头看星空,总说“身在银河系”,但这颗容纳了太阳系的宇宙“超级大盘”,到底大到什么地步?今天咱们不甩枯燥数据,用3个日常类比,带你直观感受银河系的离谱尺度。先从最基础的“直径”说起。咱们平时聊的银 ... 天文之最01-24
-
天文学巨擘:第谷·布拉赫的天文奇迹与永恒遗产 引言在浩瀚的科学星空中,有一些天文学家的名字永远镌刻在历史的长河中,他们用卓越的观察与创新推动人类对宇宙的认知。丹麦天文学家第谷·布拉赫(1546—1601)便是其中的杰出代表。他以非凡的天文观测技巧和极其精 ... 天文之最01-24
-
第谷·布拉赫:北欧最狂天文学家 他右脸缺块肉、鼻子是金子做的、养了1只鹿当宠物还让它喝啤酒——靠肉眼观测50年,手绘700张星图,数据精确到“头发丝”,却死于憋尿?!临终拉住开普勒手喊:“别毁了我的星星!”今天聊一个比梵高还疯、比达芬奇还 ... 天文之最01-24
-
第谷·布拉赫:用双眼丈量星空的“最后一位古典天文学家” 在望远镜尚未诞生的16世纪,有一位天文学家仅凭肉眼和自制仪器,将行星观测精度推向了人类感官的极限;他一生执着于“修正宇宙模型”,却在临终前将毕生数据托付给弟子,意外促成了日心说的最终确立。他就是丹麦天文 ... 天文之最01-21
-
天文学奇才——第谷.布拉赫;用望远镜绘出星空的丹麦天才 在浩瀚的宇宙中,有多少天体在默默闪烁?又有谁用超凡的智慧,将这些星辰的轨迹逐一记录?今天,我们要讲的,是一位被誉为“现代天文学之父”的丹麦天才——第谷·布拉赫(1546—1601)。 天才少年,天文梦想的萌芽 ... 天文之最01-20
相关文章
- 第谷·布拉赫:被遗忘的天文观测之王,开普勒的"贵人"
- 先驱第谷·布拉赫:天文学的伟大先驱
- 中国古代天文学有多牛?没有望远镜,却能看透宇宙的秘密
- 宇宙的“心跳”:脉冲星如何成为宇宙中最精准的时钟?
- 最亮时刻!今天将出现“木星冲日”天象
- 第谷·布拉赫:望远镜没出生前,天文界最牛“人肉观测机”
- 最亮时刻!今日将出现“木星冲日”天象
- 第谷·布拉赫是人类历史上最狂的“天文数据基建狂魔”
- 古希腊最牛学霸!亚里士多德:从天文到哲学,成为‘全能大师’
- 第谷·布拉赫:是人类天文观测史上最硬核的“基建狂魔+数据CEO
- 用望远镜点亮星空的丹麦奇才—第谷.布拉赫如何成为天文学奇才?
- 探索太阳系边缘:阋神星!它的发现让太阳系发生大改变
- 天文学家争论了上100年,木星核心竟然是“第三种形态”?
- 天文学的神秘魔方:第谷·布拉赫,那个用天文表征服星空的丹麦天才
- 第谷,布拉赫,丹麦天文学奇才的璀璨一生与不朽贡献
- 第谷.布拉赫:天文学界的奇才与<<鲁道夫天文表>>的奠基者
- 第谷·布拉赫:丹麦天才的天文奇迹,缔造最精确的天文表!
- 第谷.布拉赫:天文学的奇才与天文表的巅峰之作
- 托勒密:古代天文大神的‘天文盘点’,他到底是天才还是天坑?”
- 星空有约丨天象大戏“月掩昴星团”陪你跨年
热门阅读
-
彭罗斯阶梯是个走不完的楼梯,用二维视角呈现出来 07-13
-
半老徐娘指多少岁?徐娘忍受不了折磨选择自杀 07-13
