重力波到底是什么?和黑洞又有什么关系?

重力波示意图。当物体加速度前进时(如两个超大质量星体互绕),会使空间的扭曲发生变化、产生「涟漪」,这就是「重力波」。图片来源│R. Hurt/Caltech-JPL

雷射光被分光镜分成两道,分别沿着两根管子前进,经由管末的反射镜反射四百趟之后,两道雷射光会在出发的交角处会合并互相干涉。如果没有重力波,两道光程一样(两根管长一样),不会出现干涉条纹。如果有重力波经过,光程不同(管长些许不同),就会出现干涉条纹,藉此侦测出重力波。数据源│ LIGO will be getting a quantum upgrade图说设计│黄晓君、林洵安

雷射干涉仪太空天线(LISA)示意图。在太空中的三个相距 250万公里的探测器会朝彼此放出雷射光,当有重力波经过造成空间扰动,使宇宙飞船间的距离改变时,会影响雷射光的干涉结果。图片来源│NASA

台湾中研院物理所吴建宏研究员,以深厚的学养、推广科学的使命感,将高深的重力波学理,转化为生动好懂的科普演讲,在 2019年中研院院区开放日与民众分享。摄影│林洵安
据《研之有物》(采访编辑:郭雅欣美术编辑:林洵安):若说起近年科普界最火红的关键词,绝对少不了「重力波」。重力波爆红的原因,无非是位于美国的雷射干涉仪重力波观测站( LIGO)在 2015年首度观察到来自一场黑洞合并事件引起的重力波,并于 2017年获得诺贝尔物理奖的肯定。重力波到底是什么?和黑洞又有什么关系? 2019年台湾中研院院区开放日,中研院物理所吴建宏研究员的精彩演讲「利用重力波探测宇宙黑洞」,要跟大家聊聊重力波大小事。
重力像水波?
宇宙万物之间都有重力,比如说,地球是因为具有重力,才能把我们「吸」在地表上;太阳是因为具有重力,才能让八大行星不断绕着它公转。
不过,爱因斯坦的广义相对论中,认为重力是来自空间的扭曲,质量愈大的物体,周围的空间就扭曲的愈厉害。而当物体加速度前进时,则会使空间的扭曲发生变化、产生「涟漪」,这就是「重力波」。吴建宏形容:「就像水中的涟漪那样,水波是依赖着水而存在,重力波则是依赖着空间而存在。」
既然宇宙中有那么多天体,而且质量大的也不少,可以想象我们所处的「空间」到处都是重力波,一点也不平滑,反而可能像处处水波荡漾的大池塘,真是颠覆直觉!
既然重力波到处都是,为什么在爱因斯坦 1916年提出重力波之后,我们相隔了约100年,才终于透过 LIGO找到了它存在的证据呢?
因为重力波能引起的「波动」非常的小,科学家估计即使是剧烈的天体合并事件,能引起的重力波所造成的空间扰动,传递到地球时,数量级也顶多只有 10-12比 1,换算下来,一个一公里长的物体,因为重力波而造成的改变量只有千分之一个原子核直径那么长而已,也难怪爱因斯坦在提出重力波之后,曾说过「我们可能永远测量不到重力波的存在。」不过,幸好如此,我们才不会感觉自己一下子变矮、一下子又变胖,对吧?
尽管连爱因斯坦都没把握测得到,但不要小看科学家的斗志。既然波动很小,我们就设计超级精密的仪器来测量它!在科学家大无畏的精神下制造出的 LIGO,精确度数量级硬是高达了 10-22!
「在爱因斯坦提出重力波的一百年后,我们终于找到了重力波存在的证据」
LIGO的完美 L
科学家是怎么做到的呢?答案就在 LIGO超特别的设计里。 LIGO包含了一组相互垂直、呈 L形的两根管子,每根管子的长度都是4公里。一开始,从交角处出发的雷射光,会被分光镜分成两道,各自沿着两根管子前进,再由管末的反射镜反射回来。雷射光来回反射四百趟之后,会在交角处会合并互相干涉。
在没有重力波的情况下,从两根管子回来的雷射光走的路程长度完全相同,在干涉过程中会彼此抵消,不会产生讯号。但如果重力波引起空间扭曲,就可能对两根管子的长度产生影响,拉伸或压缩了一点点,两道雷射光的光程就会有些微不一样,回到交角处时的相位也会有一点点差异,这一点点的差异就足以让 LIGO精密的干涉仪器产生干涉讯号,让科学家知道:「嘿!刚刚有重力波经过这里!」
换言之,尽管重力波能产生的空间扰动超级小,但 LIGO把雷射光的光程拉得超级长,尽可能把重力波造成的空间扰动放大到可观测的程度,然后等待足够大的重力波来临时,就是我们窥探它的好机会。
看见了!黑洞在合并
当然,尽管我们用 LIGO这样的仪器做了万全的准备,要看到「足够大」的重力波,还得有天时地利的帮助才行。重力波虽然可以穿透万物,不像光一样容易被挡住,但若波源太远,波的强度还是会随着距离逐渐减弱,所以得有一个距离地球不太远,又能产生明显重力波的波源才行。
此外,要产生重力波,需要天体系统在旋转时的「轮廓」产生变化,也就是这个系统本身的外观愈不对称愈好。如果是一个球状对称的天体在自转,或者天体很平均的向内塌缩,是不会产生重力波的。反过来说,一个双星系统彼此绕行最后合并的过程,由于双星位置一直变换,整个系统的不对称性高,因此产生的重力波就会比较明显,所带出的能量也会比较大,相对容易观测。既然如此,最可能产生重力波的事件,就莫过于「黑洞合并」及「中子星合并」了。以下是以计算机仿真两个黑洞合并事件以及在过程中发出的重力波。
黑洞和中子星都可以是恒星老年死亡后塌缩下的产物。恒星倚赖核心的物质进行核融合反应,来抵抗自身重力,一旦迈入老年,内部的核融合燃料渐渐减少,就会抵抗不了重力,整个球体往内塌缩成更小的球体。如果恒星的质量够大,最后会在一场「超新星爆炸」后,留下中子星,其中所有的电子、质子都被重力压缩合并成中子,可以想见重力有多么巨大!如果要形成黑洞,需要的重力又比中子星的更巨大,连中子都被压缩,形成一个密度无限大的「奇异点」,位于黑洞中心,它是一个以目前的物理还无法解释到底是什么的「点」。
黑洞与中子星是宇宙中密度最大及次大的天体,如果彼此互绕又合并,放出的重力波一定有机会看得到。果不其然,2015年 9月,LIGO团队首度侦测到的重力波,讯号就来自距离地球约 13亿光年的一次黑洞合并事件,两个黑洞的质量分别约为 36倍太阳质量和 29倍太阳质量。这个结果让全世界的物理学家都震惊了,因为这是重力波真正存在的第一个铁证!
接下来的两年内,LIGO及 VIRGO又陆续观测到三次黑洞合并事件引起的重力波,还在 2017年 8月首次观测到由中子星合并事件引起的重力波!由于中子星会放出可见光,科学家利用其他望远镜对这次的合并事件的观察结果,也得到许多珍贵的新发现,例如重金属元素的形成。
LIGO与 VIRGO并非世界上仅有的重力波探测计划。科学家会利用分布世界各地的无线电波望远镜,组成波霎定时数组(PTA),由于波霎就像极为精准的灯塔一样,隔着固定的时间间距放出无线电波,因此,如果波霎受到重力波的影响,导致放出的无线电波传递到地球的距离有了一点点改变,就会使它来到地球的时间提早或延迟一点点,科学家可以透过观察这个微小的时间差来搜寻重力波。
另一方面,欧洲太空总署预计在 2030年发射「雷射干涉仪太空天线」(LISA),包含三个宇宙飞船,彼此相距 250万公里,利用和 LIGO类似的设计,从彼此间传递的雷射光干涉结果来寻找重力波。这几个重力波探测计划针对的重力波频率各有不同,因此可以找到不同的重力波源,重力波的频率愈低,愈可能是质量愈大的黑洞或中子星合并事件,因为系统所占空间愈大,彼此绕行一圈要花的时间也愈久,放出重力波的周期也跟着愈长。
重力波:探索天文的新神器
在探寻重力波的路途上,黑洞扮演着重要的角色,宇宙中的黑洞合并事件让我们有了窥探重力波的机会。反过来,在科学家证实重力波的存在,并且一次次探测到重力波之后,也准备利用重力波来研究天文,这是因为重力波在传递过程中,不会受到任何物体的干扰,不像光或粒子容易被挡住,所以重力波可以将波源的讯息,例如合并事件中的黑洞质量及自旋,完整的传递出来。因此,重力波是研究黑洞、甚至是其他天文课题的好工具。
「在我们千辛万苦找到重力波之后,重力波反转角色,从被观察的对象,变成研究天文的好工具。」举例来说,从重力波的观测,我们看到了许多双黑洞合并的事件,这或许可以对于「超大质量黑洞」起源提供左证。
多数黑洞的质量落在几十个太阳质量的范围,通常是恒星死亡所造成,然而宇宙中有许多质量比这大很多的超大质量黑洞,例如银河系中心的黑洞有 400万倍太阳质量,前阵子由中研院天文所拍摄到首张黑洞照片的主角── M87星系中心的黑洞,更是高达 65亿倍太阳质量。这些大得让人无法想象的黑洞,起源一直令人好奇。目前主流认为,它们是由普通黑洞彼此不断合并而逐渐形成的。
另一方面,重力波也可望在吴建宏目前所研究的「太初黑洞」」(primordial black holes)课题上,提供重要的协助。
太初黑洞最早是 1970年代由霍金所提出,指的是宇宙刚刚形成时产生的黑洞。当时宇宙还没有任何天体形成,只有一些物质分布,有些地方分布得比较致密,就可能塌缩产生黑洞。
这些太初黑洞和目前所知的黑洞不太一样,质量可以非常的小,只有 1012公斤,大约是地球上一座冰山的质量。因为黑洞会不断放出辐射而蒸发,这么小的黑洞,蒸发速度很快,如今应该几乎都消失了。
那么,重力波如何能帮忙找到太初黑洞呢?关键是:太初黑洞是早期宇宙中物质分布比较致密的地方,在形成时物质的分布是不对称的。如前面所说,不对称的系统会放出重力波。尽管这些小小的黑洞可能都蒸发消失了,但曾经发出的重力波不会消失。如果太初黑洞数量够多,产生的重力波迭加起来,我们应该有机会观察得到。换句话说,重力波能够为太初黑洞的存在与否提供左证。
「太初黑洞可能很迷你,却留下了永远不会被抹灭的重力波讯号。」
总之,重力波的研究才刚刚开始,但物理学家们都非常看好,引颈期盼它能带来更多惊喜!
大家都在看
-
既然黑洞不可见,又为什么能被拍摄到?关于黑洞的有趣知识 早在18世纪末,英国的科学家就基于牛顿的万有引力定律提出,存在一种超高密度的恒星,它的引力大到连光都无法从其内部逃脱。直到2019年,人类首张黑洞照片的诞生,为证明黑洞的存在提供了直接影像证据。M87星云中心 ... 宇宙探索12-25
-
如何探索宇宙,研究宇宙的两种方法 星空浩瀚无穷无尽,而短暂的生命却常常对无尽的星空充满了向往,对宇宙的未知充满了好奇。这种向往、好奇仿佛是人类与生俱来的特征,又或是生命自身的属性,天生如此。宇宙中充满了无穷无尽的物质、无边无际的空间、 ... 宇宙探索12-24
-
2025科学三大新发现,彻底颠覆人类认知! 2025年,科学界发生了三件大事,每一件都能让人鸡皮疙瘩掉一地——甚至连顶级科学家都直言:“我们要重新理解世界了!”今天,我们就用最简单的大白话,带你看懂这三大发现。先说第一个炸翻科学界的消息:宇宙膨胀速 ... 宇宙探索12-23
-
夜空中这么多的恒星从何而来?一文带你看懂恒星的诞生 在郊外晴朗的夜空中,仰望满天繁星,除了月亮和几颗行星,剩下的所有都是恒星,它们共同组成了美丽的星空。郊外的夜空,有数不尽的恒星恒星是指本身能够发生热核反应,能够发光发热的星体。恒星的数量非常庞大,仅在 ... 宇宙探索12-23
-
启动“流浪地球”计划的原因,恒星的最终结局是什么 在电影“流浪地球”中,太阳不断膨胀,最终将会大到吞噬地球公转的轨道,人类迫不得已,只能开启流浪地球计划,推动地球远离太阳,寻找新的宜居地。你可能会好奇,现实中太阳是否真的如电影情节会发生膨胀?距离太阳 ... 宇宙探索12-23
-
宇宙“任意门”虫洞全解析:从理论到现实的深度探索 第一章:什么是虫洞?虫洞,学名“爱因斯坦-罗森桥”,并非科幻作家凭空想象的产物,而是广义相对论给出的一个严肃的数学解。简单来说,它是连接时空中两个不同区域的“捷径隧道”。一个生动的比喻想象我们的三维空 ... 宇宙探索12-23
-
人类首次清晰捕捉黑洞“舞步”,开启宇宙探索新视界 12月12日中午,在北京中国科学院国家天文台会议室内,研究员刘继峰、王亚楠与中国科学院大学副教授黄样、华中科技大学教授雷卫华等正在聚焦1.2亿光年外的一场“宇宙风暴”—— 一颗恒星被超大质量黑洞撕裂,残骸形成 ... 宇宙探索12-20
-
封面解读:外星生命、暗物质、暗能量……宇宙探索之旅,出发! 当我们抬头仰望星空,是否曾想过,那些闪烁的星光背后,隐藏着宇宙怎样的秘密?《知识就是力量》2025年12月新刊封面正是一幅精心编排的宇宙探索地图。让我们跟随封面上的图案,踏上一场穿越时空的宇宙探索之旅。12月 ... 宇宙探索12-18
-
宇宙有多大?——科学视角一探索与认知- 引言宇宙的浩瀚与神秘一直是人类探索的终极命题。从古代天文学家仰望星空的梦想,到现代科学家利用先进的望远镜进行深空探测,关于“宇宙有多大”的问题一直激发着人类的好奇心和探索欲望。本文将结合最新的科学研究 ... 宇宙探索12-14
-
宇宙有多大?探索无垠的空间之谜 “宇宙有多大?”这是一个古老而又深刻的问题,激发了无数天文学家、物理学家乃至普通人对未知世界的无限好奇。从古代的天文学家仰望星空,到现代科学利用先进望远镜观测遥远星系,我们不断在探索宇宙的边界,试图理 ... 宇宙探索12-14
相关文章
- 宇宙有多大?探索无垠的空间之谜
- 宇宙诞生时间大揭秘:一场跨越时空的探索
- 天文望远镜的演变史:人类探索宇宙的“神器”之路
- 宇宙的奥秘探索:我们到底走了多远?
- 精妙绝伦的宇宙探索未解之谜
- 用我们能读得懂的语言走进宇宙前沿知识——引力的了解和探索之中
- 【标题】天文与宇宙探索带你走进神秘的星空世界,揭开宇宙的秘密
- 70年后人类如何探索宇宙?中国科技馆“筑梦星球”展提供科幻答案
- 从1912到2025,宇宙射线起源探索终突破,中国观测站功不可没
- 无限与樊笼:论宇宙探索中的人类认知边界
- 地球存在如此多威胁人类的问题,为什么还要投资探索宇宙呢?
- 中国航天再破局!卫星天团探索宇宙,千年谜题即将揭晓
- 中国“太空天团”将出征!四颗卫星开启宇宙终极探索之旅
- 宇宙有多大:探索无垠星海的奥秘
- 太空科技强国:探索宇宙的未来之路
- 空间站:人类探索宇宙的新前沿
- 利多星智投:从大气层内到宇宙深空的探索——航空航天入门指南
- 实践三十号卫星的成功发谢,为人类探索宇宙奠定了基础
- 探索宇宙的奥秘::从地球到星际的奇幻旅程
- 火星变“地球2.0”要多久?为什么比想象中更难一万倍?
热门阅读
-
预言2030年太阳将休眠,恐怖的千年极寒将来临 07-11
-
中国十大元帅之死,多高寿而善终(林彪叛逃而死) 07-11
-
因果报应真实事例,做尽坏事必遭天谴 07-11
-
全球人口减少可能带来的六大教训和好处 07-18
-
离太阳最近的十大恒星排名,宇宙最大十大星球 04-12
