宇宙万物都有质量,但质量到底来自哪里?
仔细看下面这张图片,你能猜出这是什么吗?

你会看到一些不同颜色的球,指向不同方向的箭头,还有一些卷曲的弹簧。但似乎很难猜出它们代表了什么。
在揭晓答案之前,我们首先得问一个问题:在我们生活中接触到的一切事物都是由什么组成的?古希腊哲学家猜想存在着一种最小的、无法分割的“原子”,构成了万事万物。古希腊文中的ἄτομος,正是“atom”(原子)一词的来源,其字面意思是不可分割的。
现在我们知道,原子是由更小的质子、中子和电子构成的。电子是基本粒子,意味着它无法继续分割,但是质子和中子可以进一步分解为基本粒子夸克和胶子。

○ 从宏观尺度到亚原子尺度,基本粒子的大小在决定组合结构的大小时,只起到很小的作用。构成物质的分子之间存在巨大的空隙;相对于整个原子,原子核几乎只是一个点;对于质子而言,组成它的夸克在决定其质量时几乎无足轻重。
让我们再进一步地探索质子的内部世界。质子是由两个上夸克和一个下夸克组成的(中子则是由一个上夸克和两个下夸克组成),但是当我们把三个夸克的质量加起来时,却发现夸克的质量之和比质子质量的0.2%还要少。(胶子本身是无质量的,而电子的质量不到质子质量的0.06%。)这是为什么?
这其中的原因与一种对我们来说非常违反直觉的力有关——强核力。引力具有一种荷,且总是相互吸引的;电磁作用力有正负两种电荷;而强相互作用有红、绿、蓝三种色荷,这三种色荷之和是无色的。
除了夸克的色之外,还存在三种反色:青(反红)、红(反绿)、黄(反蓝)。任何一对色-反色的组合也是无色的。这就是存在重子(由三个夸克组成)或介子(由夸克-反夸克对组合而成)的原因:因为自然界要求完整、束缚态的物体是无色的。
夸克结合成质子的方式从根本上不同于我们所知的其他所有相互作用力。对于我们熟悉的引力和电磁力而言,当物体越接近,它们之间的力就越强,但是当夸克任意接近时,它们之间的吸引力逐渐下降为零。也不同于其他相互作用力随着物体的远离而逐渐变弱,当夸克彼此远离时,将夸克拖拽在一起的力会变得更强。
强核力的这种特性被称为渐近自由(asymptotic freedom),传递这种相互作用的粒子被称为胶子。将质子结合起来的能量,也就是组成99.8%的质子质量,正来自于这些胶子。

○ 渐近自由理论描述原子核内夸克间相互作用的强度,Wilczek、Politzer和Gross三人因此而获得了诺贝尔奖。胶子的交换与99.8%的质子和中子质量有关。
回想一下在文章开头的那张图片,它显示的正是质子内部的复杂结构,包含了夸克、胶子和夸克自旋,它远不止只有三个夸克那么简单。

○ 通过实验改进和新理论一前一后的发展,我们对质子内部结构——包括夸克“海”和胶子如何分布——已经有了更好的理解。质子的内部结构,包含夸克、胶子、夸克自旋。核力就像一个弹簧,未被拉伸时的作用力几乎可以忽略,但是拉伸到很大距离时却表现为非常大的吸引力。正是这种力,而非夸克的静止质量给予质子以质量。这些结果同样适用于中子,并且可以帮助解释质子“失踪的”那99.8%的质量。
因为强核力作用的方式,这些胶子事实上处于时间的哪个节点具有很大的不确定性。目前,我们有一个关于质子内平均胶子密度的坚实模型,但是,我们需要更好的实验数据和更合理的模型来知道,在任何特定时间点,胶子到底在哪里。
然而,即便我们不知道所有的事情,仍然解决了一个谜题:如何仅仅根据夸克的内容来计算不只是质子,而是所有原子核的预期质量。强核力与自然中一系列不可思议的性质有关,包括:
质子和中子如何结合在一起形成原子核;为什么不同的元素有不同的单核子质量比;太阳中的核反应如何以及以何种比率发生;为什么铁、钴、镍是最稳定的元素。描述强相互作用的量子场论——量子色动力学(QCD)——的困难之处在于,我们用来做计算的标准方法是不好的。通常情况下,我们会看看粒子耦合的效果:带色荷的夸克交换一个胶子,传递相互作用力。夸克在交换胶子时,也可以产生一个粒子-反粒子对,或者一个额外的胶子,而这些应当是对简单的单个胶子交换的修正。它们可以产生额外的一对粒子-反粒子或者一个胶子,作为更高阶的修正。
我们称这种方法为量子场论的微扰展开,认为计算更高阶修正的贡献将给出一个更准确的结果。
对于量子电动力学(QED),这种方法非常适用,但是对于量子色动力学,它却完全失败。强相互作用的机制并不相同,所以这些修正会迅速增长到特别大,当添加更多修正项时,计算结果不会向着正确答案收敛,而是会发散,远离正确答案。

○ 我们使用费曼图来计算每种基本相互作用,强、弱相互作用和电磁力,包括高能、低温/聚集状态。然而,对于强相互作用,在计算高阶修正时会遭遇可怕的问题,这种微扰的方法是不成功的。
幸运的是,还有另一种非微扰的方法可以解决这个问题——格点量子色动力学。通过将空间和时间看作一个网格(或格点,这里的网格可以任意大,其间距可以任意小)而非连续体,就可以以一种巧妙的方式解决这个问题。
然而,用标准的微扰法解决量子色动力学时,空间连续的特性意味着,在小的距离上会失去计算相互作用强度的能力,格点法则意味着,网格间距的大小存在一个截止尺寸。夸克处于网格线的交点处,胶子沿着连接格点的连线存在。

○ 随着计算能力和格点量子色动力学技术的进步,关于质子的各种量(例如质子各组分的自旋贡献)的计算精度也在不断提升。
只要有足够的计算能力,就可以将量子色动力学的预测实现到任意精度,只要让网格间距缩小即可。这会耗费更多计算量,但是会提高计算精度。
在过去三十年,这种技术已经导致了大量坚实的预测,包括轻的原子核的质量,以及在特定温度和能量状态下核聚变的反应率。从第一原理出发,质子质量的理论预测如今可以精确到2%以内。
格点量子色动力学不仅向我们解释了,强相互作用如何导致了宇宙中绝大部分正常物质的质量,也有可能告诉我们从核反应到暗物质等各种各样的其他现象。
大家都在看
-
宇宙的奥秘探索:我们到底走了多远? 朋友们,你有没有想过,浩瀚的宇宙到底藏着什么秘密?从小仰望星空,看到那一颗颗闪烁的星星,心里是不是也会想:它们背后到底隐藏着什么?其实,关于宇宙的故事,就像一场永不停歇的冒险,充满了奇迹和谜题。今天就 ... 宇宙探索12-07
-
精妙绝伦的宇宙探索未解之谜 6个精妙绝伦的宇宙未解之谜,颠覆认知的星际谜题至今无解!宇宙浩瀚如穹顶,藏着无数超越想象的奥秘。从神秘的暗物质到诡异的黑洞奇点,从外星文明的猜想 to 宇宙的终极命运,这些未解之谜既牵动着科学家的探索神经 ... 宇宙探索12-03
-
用我们能读得懂的语言走进宇宙前沿知识——引力的了解和探索之中 在人类探索宇宙的漫长历史中,我们逐渐掌握了更多宇宙的秘密,宇宙的运行规则最终被归结为四种力,它们都非常神秘,难以理解,是宇宙探索的最前沿理论。而它们之中,引力与我们最为接近,也最容易被我们理解。它既是 ... 宇宙探索12-02
-
【标题】天文与宇宙探索带你走进神秘的星空世界,揭开宇宙的秘密 嘿,朋友们!你有没有想过,天上的那些星星到底藏着什么秘密?为什么我们能看到那么多星座?人类又是怎么一步步走进浩瀚宇宙的?今天就带你深入了解一下天文和宇宙探索的那些事,让你对星空有更酷、更震撼的认识!说 ... 宇宙探索12-02
-
70年后人类如何探索宇宙?中国科技馆“筑梦星球”展提供科幻答案 中新网北京12月1日电 (记者 孙自法)70年之后,人类会取得哪些重大科技突破?人们将如何进一步探索和利用宇宙空间?……中国科技馆最新推出的“筑梦星球”科幻主题展览,为这些问题准备了答案。最新推出的“筑梦星球 ... 宇宙探索12-02
-
从1912到2025,宇宙射线起源探索终突破,中国观测站功不可没 本文内容均是根据权威材料,结合个人观点撰写的原创内容,辛苦各位看官支持。2025年11月,四川稻城亚丁海拔4410米的高原上,LHAASO观测站的探测器突然记录到一串异常数据。这个由数千个闪烁体和水切伦科夫探测器组成 ... 宇宙探索11-30
-
无限与樊笼:论宇宙探索中的人类认知边界 文/星火燎原 在浩渺无垠的宇宙长河中,我们所在的银河系,是一个拥有数千亿颗恒星、横跨十万光年的宏伟天体系统。在其旋臂之上,我们的太阳、我们的地球,不过是这亿万分之一的微光。在人类有限的感知中,银河系的尺 ... 宇宙探索11-29
-
地球存在如此多威胁人类的问题,为什么还要投资探索宇宙呢? 当森林大火吞噬加州社区、气候变化威胁全球稳定、流行病挑战公共卫生体系时,质疑天文学研究价值的声音显得合情合理。毕竟,在2025年1月的加州山火中,损失超过2500亿美元,而美国林务局的年度预算却不足100亿美元。在这 ... 宇宙探索11-29
-
中国航天再破局!卫星天团探索宇宙,千年谜题即将揭晓 哈喽大家好,今天小无带大家聊聊最近全网沸腾的航天大动作!2025年11月24日下午,北京怀柔科学城一场发布会直接把全网炸翻了!没有流量明星,没有花边新闻,就靠一个十五五太空探源科学卫星计划,网友们的留言直接刷 ... 宇宙探索11-28
-
中国“太空天团”将出征!四颗卫星开启宇宙终极探索之旅 当你仰望星空,是否好奇宇宙如何诞生、地球是否孤独、黑洞真面目究竟是什么?我国“十五五”期间(2026-2030)将发射四颗卫星,直击这些人类的终极疑问。在宇宙探索的征程上,中国正迈出震撼一步。“鸿蒙计划”卫星 ... 宇宙探索11-27
相关文章
- 宇宙有多大:探索无垠星海的奥秘
- 太空科技强国:探索宇宙的未来之路
- 空间站:人类探索宇宙的新前沿
- 利多星智投:从大气层内到宇宙深空的探索——航空航天入门指南
- 实践三十号卫星的成功发谢,为人类探索宇宙奠定了基础
- 探索宇宙的奥秘::从地球到星际的奇幻旅程
- 火星变“地球2.0”要多久?为什么比想象中更难一万倍?
- 人类文明仅1秒,凭什么敢探索138亿年的宇宙?
- 浑天仪:凝聚古人探索宇宙的智慧(字载匠心·惊艳时光的中国智慧)
- 从一束激光到量子奇迹:普通人也能看懂的纠缠实验全解读
- 人类是怎么用望远镜探索宇宙的?背后的原理到底是啥?
- 全国仅十几所!这 5 所天文学强校含金量拉满,探索宇宙就选它们
- 国内天文学三强高校深度解析:A + 学科背后的宇宙探索密码
- 宇宙探索:从火箭到火星的太空旅
- “多维宇宙探索”启幕,2025上海城市空间艺术季浦东分展区点亮张江
- 11部史诗级星际电影:探索宇宙的不同视角你看过几部?
- 探索“多维宇宙”,2025上海城市空间艺术季浦东分展区点亮张江
- 光速飞行未必能逃离银河,人类探索宇宙有多艰难?
- 中微子实验国际合作增进认知 或助力探索宇宙正反物质不对称
- 探索宇宙,亚毫米波不应成为“盲点”
热门阅读
-
预言2030年太阳将休眠,恐怖的千年极寒将来临 07-11
-
中国十大元帅之死,多高寿而善终(林彪叛逃而死) 07-11
-
因果报应真实事例,做尽坏事必遭天谴 07-11
-
全球人口减少可能带来的六大教训和好处 07-18
-
离太阳最近的十大恒星排名,宇宙最大十大星球 04-12
